|
@@ -17,7 +17,7 @@ cmd:text("Options:")
|
|
|
cmd:option("-dir", "./data/test", 'test image directory')
|
|
|
cmd:option("-model1_dir", "./models/anime_style_art_rgb", 'model1 directory')
|
|
|
cmd:option("-model2_dir", "", 'model2 directory (optional)')
|
|
|
-cmd:option("-method", "scale", '(scale|noise|noise_scale)')
|
|
|
+cmd:option("-method", "scale", '(scale|noise|noise_scale|user)')
|
|
|
cmd:option("-filter", "Catrom", "downscaling filter (Box|Lanczos|Catrom(Bicubic))")
|
|
|
cmd:option("-resize_blur", 1.0, 'blur parameter for resize')
|
|
|
cmd:option("-color", "y", '(rgb|y)')
|
|
@@ -40,6 +40,9 @@ cmd:option("-crop_size", 128, 'patch size per process')
|
|
|
cmd:option("-batch_size", 1, 'batch_size')
|
|
|
cmd:option("-force_cudnn", 0, 'use cuDNN backend')
|
|
|
cmd:option("-yuv420", 0, 'use yuv420 jpeg')
|
|
|
+cmd:option("-name", "", 'model name for user method')
|
|
|
+cmd:option("-x_dir", "", 'input image for user method')
|
|
|
+cmd:option("-y_dir", "", 'groundtruth image for user method. filename must be the same as x_dir')
|
|
|
|
|
|
local function to_bool(settings, name)
|
|
|
if settings[name] == 1 then
|
|
@@ -112,7 +115,6 @@ end
|
|
|
local function MSE2PSNR(mse)
|
|
|
return 10 * math.log10((255.0 * 255.0) / math.max(mse, 1))
|
|
|
end
|
|
|
-
|
|
|
local function transform_jpeg(x, opt)
|
|
|
for i = 1, opt.jpeg_times do
|
|
|
jpeg = gm.Image(x, "RGB", "DHW")
|
|
@@ -161,7 +163,7 @@ local function transform_scale_jpeg(x, opt)
|
|
|
return iproc.byte2float(x)
|
|
|
end
|
|
|
|
|
|
-local function benchmark(opt, x, input_func, model1, model2)
|
|
|
+local function benchmark(opt, x, model1, model2)
|
|
|
local mse
|
|
|
local model1_mse = 0
|
|
|
local model2_mse = 0
|
|
@@ -185,12 +187,13 @@ local function benchmark(opt, x, input_func, model1, model2)
|
|
|
end
|
|
|
|
|
|
for i = 1, #x do
|
|
|
- local ground_truth = x[i].image
|
|
|
local basename = x[i].basename
|
|
|
- local input, model1_output, model2_output, baseline_output
|
|
|
+ local input, model1_output, model2_output, baseline_output, ground_truth
|
|
|
|
|
|
- input = input_func(ground_truth, opt)
|
|
|
if opt.method == "scale" then
|
|
|
+ input = transform_scale(x[i].y, opt)
|
|
|
+ ground_truth = x[i].y
|
|
|
+
|
|
|
if opt.force_cudnn and i == 1 then -- run cuDNN benchmark first
|
|
|
model1_output = scale_f(model1, 2.0, input, opt.crop_size, opt.batch_size)
|
|
|
if model2 then
|
|
@@ -207,7 +210,10 @@ local function benchmark(opt, x, input_func, model1, model2)
|
|
|
end
|
|
|
baseline_output = baseline_scale(input, opt.baseline_filter)
|
|
|
elseif opt.method == "noise" then
|
|
|
- if opt.force_cudnn and i == 1 then -- run cuDNN benchmark first
|
|
|
+ input = transform_jpeg(x[i].y, opt)
|
|
|
+ ground_truth = x[i].y
|
|
|
+
|
|
|
+ if opt.force_cudnn and i == 1 then
|
|
|
model1_output = image_f(model1, input, opt.crop_size, opt.batch_size)
|
|
|
if model2 then
|
|
|
model2_output = image_f(model2, input, opt.crop_size, opt.batch_size)
|
|
@@ -223,7 +229,10 @@ local function benchmark(opt, x, input_func, model1, model2)
|
|
|
end
|
|
|
baseline_output = input
|
|
|
elseif opt.method == "noise_scale" then
|
|
|
- if opt.force_cudnn and i == 1 then -- run cuDNN benchmark first
|
|
|
+ input = transform_scale_jpeg(x[i].y, opt)
|
|
|
+ ground_truth = x[i].y
|
|
|
+
|
|
|
+ if opt.force_cudnn and i == 1 then
|
|
|
if model1.noise_scale_model then
|
|
|
model1_output = scale_f(model1.noise_scale_model, 2.0,
|
|
|
input, opt.crop_size, opt.batch_size)
|
|
@@ -285,6 +294,37 @@ local function benchmark(opt, x, input_func, model1, model2)
|
|
|
model2_time = model2_time + (sys.clock() - t)
|
|
|
end
|
|
|
baseline_output = baseline_scale(input, opt.baseline_filter)
|
|
|
+ elseif opt.method == "user" then
|
|
|
+ input = x[i].x
|
|
|
+ ground_truth = x[i].y
|
|
|
+ local y_scale = ground_truth:size(2) / input:size(2)
|
|
|
+ if y_scale > 1 then
|
|
|
+ if opt.force_cudnn and i == 1 then
|
|
|
+ model1_output = scale_f(model1, y_scale, input, opt.crop_size, opt.batch_size)
|
|
|
+ if model2 then
|
|
|
+ model2_output = scale_f(model2, y_scale, input, opt.crop_size, opt.batch_size)
|
|
|
+ end
|
|
|
+ end
|
|
|
+ t = sys.clock()
|
|
|
+ model1_output = scale_f(model1, y_scale, input, opt.crop_size, opt.batch_size)
|
|
|
+ model1_time = model1_time + (sys.clock() - t)
|
|
|
+ if model2 then
|
|
|
+ t = sys.clock()
|
|
|
+ model2_output = scale_f(model2, y_scale, input, opt.crop_size, opt.batch_size)
|
|
|
+ model2_time = model2_time + (sys.clock() - t)
|
|
|
+ end
|
|
|
+ else
|
|
|
+ if opt.force_cudnn and i == 1 then
|
|
|
+ model1_output = image_f(model1, input, opt.crop_size, opt.batch_size)
|
|
|
+ if model2 then
|
|
|
+ model2_output = image_f(model2, input, opt.crop_size, opt.batch_size)
|
|
|
+ end
|
|
|
+ end
|
|
|
+ model1_output = image_f(model1, input, opt.crop_size, opt.batch_size)
|
|
|
+ if model2 then
|
|
|
+ model2_output = image_f(model2, input, opt.crop_size, opt.batch_size)
|
|
|
+ end
|
|
|
+ end
|
|
|
end
|
|
|
mse = MSE(ground_truth, model1_output, opt.color)
|
|
|
model1_mse = model1_mse + mse
|
|
@@ -385,7 +425,7 @@ local function load_data(test_dir)
|
|
|
local base = name:sub(0, name:len() - e:len())
|
|
|
local img = image_loader.load_float(files[i])
|
|
|
if img then
|
|
|
- table.insert(test_x, {image = iproc.crop_mod4(img),
|
|
|
+ table.insert(test_x, {y = iproc.crop_mod4(img),
|
|
|
basename = base})
|
|
|
end
|
|
|
if opt.show_progress then
|
|
@@ -394,6 +434,50 @@ local function load_data(test_dir)
|
|
|
end
|
|
|
return test_x
|
|
|
end
|
|
|
+local function get_basename(f)
|
|
|
+ local name = path.basename(f)
|
|
|
+ local e = path.extension(name)
|
|
|
+ local base = name:sub(0, name:len() - e:len())
|
|
|
+ return base
|
|
|
+end
|
|
|
+local function load_user_data(y_dir, x_dir)
|
|
|
+ local test = {}
|
|
|
+ local y_files = dir.getfiles(y_dir, "*.*")
|
|
|
+ local x_files = dir.getfiles(x_dir, "*.*")
|
|
|
+ local basename_db = {}
|
|
|
+ for i = 1, #y_files do
|
|
|
+ basename_db[get_basename(y_files[i])] = {y = y_files[i]}
|
|
|
+ end
|
|
|
+ for i = 1, #x_files do
|
|
|
+ local key = get_basename(x_files[i])
|
|
|
+ if basename_db[key] then
|
|
|
+ basename_db[key].x = x_files[i]
|
|
|
+ else
|
|
|
+ error(string.format("%s is not found in %s", key, y_dir))
|
|
|
+ end
|
|
|
+ end
|
|
|
+ for i = 1, #y_files do
|
|
|
+ local key = get_basename(y_files[i])
|
|
|
+ local d = basename_db[key]
|
|
|
+ if not (d.x and d.y) then
|
|
|
+ error(string.format("%s is not found in %s", key, x_dir))
|
|
|
+ end
|
|
|
+ end
|
|
|
+ for i = 1, #y_files do
|
|
|
+ local key = get_basename(y_files[i])
|
|
|
+ local x = image_loader.load_float(basename_db[key].x)
|
|
|
+ local y = image_loader.load_float(basename_db[key].y)
|
|
|
+ if x and y then
|
|
|
+ table.insert(test, {y = y,
|
|
|
+ x = x,
|
|
|
+ basename = base})
|
|
|
+ end
|
|
|
+ if opt.show_progress then
|
|
|
+ xlua.progress(i, #y_files)
|
|
|
+ end
|
|
|
+ end
|
|
|
+ return test
|
|
|
+end
|
|
|
function load_noise_scale_model(model_dir, noise_level, force_cudnn)
|
|
|
local f = path.join(model_dir, string.format("noise%d_scale2.0x_model.t7", opt.noise_level))
|
|
|
local s1, noise_scale = pcall(w2nn.load_model, f, force_cudnn)
|
|
@@ -437,7 +521,7 @@ if opt.method == "scale" then
|
|
|
model2 = nil
|
|
|
end
|
|
|
local test_x = load_data(opt.dir)
|
|
|
- benchmark(opt, test_x, transform_scale, model1, model2)
|
|
|
+ benchmark(opt, test_x, model1, model2)
|
|
|
elseif opt.method == "noise" then
|
|
|
local f1 = path.join(opt.model1_dir, string.format("noise%d_model.t7", opt.noise_level))
|
|
|
local f2 = path.join(opt.model2_dir, string.format("noise%d_model.t7", opt.noise_level))
|
|
@@ -450,7 +534,7 @@ elseif opt.method == "noise" then
|
|
|
model2 = nil
|
|
|
end
|
|
|
local test_x = load_data(opt.dir)
|
|
|
- benchmark(opt, test_x, transform_jpeg, model1, model2)
|
|
|
+ benchmark(opt, test_x, model1, model2)
|
|
|
elseif opt.method == "noise_scale" then
|
|
|
local model2 = nil
|
|
|
local model1 = load_noise_scale_model(opt.model1_dir, opt.noise_level, opt.force_cudnn)
|
|
@@ -458,5 +542,18 @@ elseif opt.method == "noise_scale" then
|
|
|
model2 = load_noise_scale_model(opt.model2_dir, opt.noise_level, opt.force_cudnn)
|
|
|
end
|
|
|
local test_x = load_data(opt.dir)
|
|
|
- benchmark(opt, test_x, transform_scale_jpeg, model1, model2)
|
|
|
+ benchmark(opt, test_x, model1, model2)
|
|
|
+elseif opt.method == "user" then
|
|
|
+ local f1 = path.join(opt.model1_dir, string.format("%s_model.t7", opt.name))
|
|
|
+ local f2 = path.join(opt.model2_dir, string.format("%s_model.t7", opt.name))
|
|
|
+ local s1, model1 = pcall(w2nn.load_model, f1, opt.force_cudnn)
|
|
|
+ local s2, model2 = pcall(w2nn.load_model, f2, opt.force_cudnn)
|
|
|
+ if not s1 then
|
|
|
+ error("Load error: " .. f1)
|
|
|
+ end
|
|
|
+ if not s2 then
|
|
|
+ model2 = nil
|
|
|
+ end
|
|
|
+ local test = load_user_data(opt.y_dir, opt.x_dir)
|
|
|
+ benchmark(opt, test, model1, model2)
|
|
|
end
|