|
@@ -1,8 +1,9 @@
|
|
|
-- ref: https://en.wikipedia.org/wiki/Huber_loss
|
|
|
-local WeightedHuberCriterion, parent = torch.class('w2nn.WeightedHuberCriterion','nn.Criterion')
|
|
|
+local ClippedWeightedHuberCriterion, parent = torch.class('w2nn.ClippedWeightedHuberCriterion','nn.Criterion')
|
|
|
|
|
|
-function WeightedHuberCriterion:__init(w, gamma)
|
|
|
+function ClippedWeightedHuberCriterion:__init(w, gamma, clip)
|
|
|
parent.__init(self)
|
|
|
+ self.clip = clip
|
|
|
self.gamma = gamma or 1.0
|
|
|
self.weight = w:clone()
|
|
|
self.diff = torch.Tensor()
|
|
@@ -11,8 +12,10 @@ function WeightedHuberCriterion:__init(w, gamma)
|
|
|
self.square_loss_buff = torch.Tensor()
|
|
|
self.linear_loss_buff = torch.Tensor()
|
|
|
end
|
|
|
-function WeightedHuberCriterion:updateOutput(input, target)
|
|
|
+function ClippedWeightedHuberCriterion:updateOutput(input, target)
|
|
|
self.diff:resizeAs(input):copy(input)
|
|
|
+ self.diff[torch.lt(self.diff, self.clip[1])] = self.clip[1]
|
|
|
+ self.diff[torch.gt(self.diff, self.clip[2])] = self.clip[2]
|
|
|
for i = 1, input:size(1) do
|
|
|
self.diff[i]:add(-1, target[i]):cmul(self.weight)
|
|
|
end
|
|
@@ -27,7 +30,7 @@ function WeightedHuberCriterion:updateOutput(input, target)
|
|
|
self.output = (square_loss + linear_loss) / input:nElement()
|
|
|
return self.output
|
|
|
end
|
|
|
-function WeightedHuberCriterion:updateGradInput(input, target)
|
|
|
+function ClippedWeightedHuberCriterion:updateGradInput(input, target)
|
|
|
local norm = 1.0 / input:nElement()
|
|
|
self.gradInput:resizeAs(self.diff):copy(self.diff):mul(norm)
|
|
|
local outlier = torch.ge(self.diff_abs, self.gamma)
|