|
@@ -25,18 +25,29 @@ cmd:option("-jpeg_times", 1, 'jpeg compression times')
|
|
|
cmd:option("-jpeg_quality_down", 5, 'value of jpeg quality to decrease each times')
|
|
|
cmd:option("-range_bug", 0, 'Reproducing the dynamic range bug that is caused by MATLAB\'s rgb2ycbcr(1|0)')
|
|
|
cmd:option("-gamma_correction", 0, 'Resizing with colorspace correction(sRGB:gamma 2.2) (0|1)')
|
|
|
+cmd:option("-save_image", 0, 'save converted images')
|
|
|
+cmd:option("-save_baseline_image", 0, 'save baseline images')
|
|
|
+cmd:option("-output_dir", "./", 'output directroy')
|
|
|
+cmd:option("-show_progress", 1, 'show progressbar')
|
|
|
+cmd:option("-baseline_filter", "Catrom", 'baseline interpolation (Box|Lanczos|Catrom(Bicubic))')
|
|
|
|
|
|
+local function to_bool(settings, name)
|
|
|
+ if settings[name] == 1 then
|
|
|
+ settings[name] = true
|
|
|
+ else
|
|
|
+ settings[name] = false
|
|
|
+ end
|
|
|
+end
|
|
|
local opt = cmd:parse(arg)
|
|
|
torch.setdefaulttensortype('torch.FloatTensor')
|
|
|
if cudnn then
|
|
|
cudnn.fastest = true
|
|
|
cudnn.benchmark = false
|
|
|
end
|
|
|
-if opt.gamma_correction == 1 then
|
|
|
- opt.gamma_correction = true
|
|
|
-else
|
|
|
- opt.gamma_correction = false
|
|
|
-end
|
|
|
+to_bool(opt, "gamma_correction")
|
|
|
+to_bool(opt, "save_image")
|
|
|
+to_bool(opt, "save_baseline_image")
|
|
|
+to_bool(opt, "show_progress")
|
|
|
|
|
|
local function rgb2y_matlab(x)
|
|
|
local y = torch.Tensor(1, x:size(2), x:size(3)):zero()
|
|
@@ -115,7 +126,9 @@ local function benchmark(opt, x, input_func, model1, model2)
|
|
|
local baseline_psnr = 0
|
|
|
|
|
|
for i = 1, #x do
|
|
|
- local ground_truth = x[i]
|
|
|
+ local ground_truth = x[i].image
|
|
|
+ local basename = x[i].basename
|
|
|
+
|
|
|
local input, model1_output, model2_output, baseline_output
|
|
|
|
|
|
input = input_func(ground_truth, opt)
|
|
@@ -130,7 +143,7 @@ local function benchmark(opt, x, input_func, model1, model2)
|
|
|
if model2 then
|
|
|
model2_output = reconstruct.scale(model2, 2.0, input)
|
|
|
end
|
|
|
- baseline_output = baseline_scale(input, opt.filter)
|
|
|
+ baseline_output = baseline_scale(input, opt.baseline_filter)
|
|
|
end
|
|
|
model1_mse = model1_mse + MSE(ground_truth, model1_output, opt.color)
|
|
|
model1_psnr = model1_psnr + PSNR(ground_truth, model1_output, opt.color)
|
|
@@ -142,41 +155,57 @@ local function benchmark(opt, x, input_func, model1, model2)
|
|
|
baseline_mse = baseline_mse + MSE(ground_truth, baseline_output, opt.color)
|
|
|
baseline_psnr = baseline_psnr + PSNR(ground_truth, baseline_output, opt.color)
|
|
|
end
|
|
|
- if model2 then
|
|
|
- if baseline_output then
|
|
|
- io.stdout:write(
|
|
|
- string.format("%d/%d; baseline_rmse=%f, model1_rmse=%f, model2_rmse=%f, baseline_psnr=%f, model1_psnr=%f, model2_psnr=%f \r",
|
|
|
- i, #x,
|
|
|
- math.sqrt(baseline_mse / i),
|
|
|
- math.sqrt(model1_mse / i), math.sqrt(model2_mse / i),
|
|
|
- baseline_psnr / i,
|
|
|
- model1_psnr / i, model2_psnr / i
|
|
|
- ))
|
|
|
- else
|
|
|
- io.stdout:write(
|
|
|
- string.format("%d/%d; model1_rmse=%f, model2_rmse=%f, model1_psnr=%f, model2_psnr=%f \r",
|
|
|
- i, #x,
|
|
|
- math.sqrt(model1_mse / i), math.sqrt(model2_mse / i),
|
|
|
- model1_psnr / i, model2_psnr / i
|
|
|
- ))
|
|
|
+ if opt.save_image then
|
|
|
+ if opt.save_baseline_image and baseline_output then
|
|
|
+ image.save(path.join(opt.output_dir, string.format("%s_baseline.png", basename)),
|
|
|
+ baseline_output)
|
|
|
end
|
|
|
- else
|
|
|
- if baseline_output then
|
|
|
- io.stdout:write(
|
|
|
- string.format("%d/%d; baseline_rmse=%f, model1_rmse=%f, baseline_psnr=%f, model1_psnr=%f \r",
|
|
|
- i, #x,
|
|
|
- math.sqrt(baseline_mse / i), math.sqrt(model1_mse / i),
|
|
|
- baseline_psnr / i, model1_psnr / i
|
|
|
- ))
|
|
|
+ if model1_output then
|
|
|
+ image.save(path.join(opt.output_dir, string.format("%s_model1.png", basename)),
|
|
|
+ model1_output)
|
|
|
+ end
|
|
|
+ if model2_output then
|
|
|
+ image.save(path.join(opt.output_dir, string.format("%s_model2.png", basename)),
|
|
|
+ model2_output)
|
|
|
+ end
|
|
|
+ end
|
|
|
+ if opt.show_progress or i == #x then
|
|
|
+ if model2 then
|
|
|
+ if baseline_output then
|
|
|
+ io.stdout:write(
|
|
|
+ string.format("%d/%d; baseline_rmse=%f, model1_rmse=%f, model2_rmse=%f, baseline_psnr=%f, model1_psnr=%f, model2_psnr=%f \r",
|
|
|
+ i, #x,
|
|
|
+ math.sqrt(baseline_mse / i),
|
|
|
+ math.sqrt(model1_mse / i), math.sqrt(model2_mse / i),
|
|
|
+ baseline_psnr / i,
|
|
|
+ model1_psnr / i, model2_psnr / i
|
|
|
+ ))
|
|
|
+ else
|
|
|
+ io.stdout:write(
|
|
|
+ string.format("%d/%d; model1_rmse=%f, model2_rmse=%f, model1_psnr=%f, model2_psnr=%f \r",
|
|
|
+ i, #x,
|
|
|
+ math.sqrt(model1_mse / i), math.sqrt(model2_mse / i),
|
|
|
+ model1_psnr / i, model2_psnr / i
|
|
|
+ ))
|
|
|
+ end
|
|
|
else
|
|
|
- io.stdout:write(
|
|
|
- string.format("%d/%d; model1_rmse=%f, model1_psnr=%f \r",
|
|
|
- i, #x,
|
|
|
- math.sqrt(model1_mse / i), model1_psnr / i
|
|
|
- ))
|
|
|
+ if baseline_output then
|
|
|
+ io.stdout:write(
|
|
|
+ string.format("%d/%d; baseline_rmse=%f, model1_rmse=%f, baseline_psnr=%f, model1_psnr=%f \r",
|
|
|
+ i, #x,
|
|
|
+ math.sqrt(baseline_mse / i), math.sqrt(model1_mse / i),
|
|
|
+ baseline_psnr / i, model1_psnr / i
|
|
|
+ ))
|
|
|
+ else
|
|
|
+ io.stdout:write(
|
|
|
+ string.format("%d/%d; model1_rmse=%f, model1_psnr=%f \r",
|
|
|
+ i, #x,
|
|
|
+ math.sqrt(model1_mse / i), model1_psnr / i
|
|
|
+ ))
|
|
|
+ end
|
|
|
end
|
|
|
+ io.stdout:flush()
|
|
|
end
|
|
|
- io.stdout:flush()
|
|
|
end
|
|
|
io.stdout:write("\n")
|
|
|
end
|
|
@@ -184,15 +213,23 @@ local function load_data(test_dir)
|
|
|
local test_x = {}
|
|
|
local files = dir.getfiles(test_dir, "*.*")
|
|
|
for i = 1, #files do
|
|
|
- table.insert(test_x, iproc.crop_mod4(image_loader.load_float(files[i])))
|
|
|
- xlua.progress(i, #files)
|
|
|
+ local name = path.basename(files[i])
|
|
|
+ local e = path.extension(name)
|
|
|
+ local base = name:sub(0, name:len() - e:len())
|
|
|
+ table.insert(test_x, {image = iproc.crop_mod4(image_loader.load_float(files[i])),
|
|
|
+ basename = base})
|
|
|
+ if opt.show_progress then
|
|
|
+ xlua.progress(i, #files)
|
|
|
+ end
|
|
|
end
|
|
|
return test_x
|
|
|
end
|
|
|
function load_model(filename)
|
|
|
return torch.load(filename, "ascii")
|
|
|
end
|
|
|
-print(opt)
|
|
|
+if opt.show_progress then
|
|
|
+ print(opt)
|
|
|
+end
|
|
|
if opt.method == "scale" then
|
|
|
local f1 = path.join(opt.model1_dir, "scale2.0x_model.t7")
|
|
|
local f2 = path.join(opt.model2_dir, "scale2.0x_model.t7")
|