|
@@ -439,46 +439,60 @@ end
|
|
|
|
|
|
-- for segmentation
|
|
|
function srcnn.fcn_v1(backend, ch)
|
|
|
- -- input size = 128
|
|
|
+ -- input_size = 120
|
|
|
local model = nn.Sequential()
|
|
|
+ --i = 120
|
|
|
+ --model:cuda()
|
|
|
+ --print(model:forward(torch.Tensor(32, ch, i, i):uniform():cuda()):size())
|
|
|
|
|
|
model:add(SpatialConvolution(backend, ch, 32, 5, 5, 2, 2, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
|
|
|
+
|
|
|
model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
|
|
|
|
|
|
model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
|
|
|
|
|
|
- model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, 128, 256, 1, 1, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 256, 256, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.Dropout(0.5, false, true))
|
|
|
+ model:add(SpatialConvolution(backend, 256, 256, 1, 1, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
|
|
|
+ model:add(nn.Dropout(0.5, false, true))
|
|
|
|
|
|
- model:add(SpatialFullConvolution(backend, 256, 128, 4, 4, 2, 2, 2, 2))
|
|
|
+ model:add(SpatialFullConvolution(backend, 256, 128, 2, 2, 2, 2, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialFullConvolution(backend, 128, 128, 2, 2, 2, 2, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialFullConvolution(backend, 128, 64, 4, 4, 2, 2, 2, 2))
|
|
|
+ model:add(SpatialConvolution(backend, 128, 64, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialFullConvolution(backend, 64, 32, 4, 4, 2, 2, 2, 2))
|
|
|
+ model:add(SpatialFullConvolution(backend, 64, 64, 2, 2, 2, 2, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialFullConvolution(backend, 32, ch, 4, 4, 2, 2, 2, 2))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialFullConvolution(backend, 32, ch, 4, 4, 2, 2, 3, 3))
|
|
|
|
|
|
model:add(w2nn.InplaceClip01())
|
|
|
model:add(nn.View(-1):setNumInputDims(3))
|
|
|
|
|
|
model.w2nn_arch_name = "fcn_v1"
|
|
|
- model.w2nn_offset = 39
|
|
|
+ model.w2nn_offset = 36
|
|
|
model.w2nn_scale_factor = 1
|
|
|
model.w2nn_channels = ch
|
|
|
- --model:cuda()
|
|
|
- --print(model:forward(torch.Tensor(32, ch, 128, 128):uniform():cuda()):size())
|
|
|
+ model.w2nn_input_size = 120
|
|
|
|
|
|
return model
|
|
|
end
|
|
|
-
|
|
|
function srcnn.create(model_name, backend, color)
|
|
|
model_name = model_name or "vgg_7"
|
|
|
backend = backend or "cunn"
|
|
@@ -500,9 +514,8 @@ function srcnn.create(model_name, backend, color)
|
|
|
end
|
|
|
end
|
|
|
--[[
|
|
|
-local model = srcnn.srresnet_2x("cunn", 3):cuda()
|
|
|
+local model = srcnn.fcn_v1("cunn", 3):cuda()
|
|
|
+print(model:forward(torch.Tensor(1, 3, 108, 108):zero():cuda()):size())
|
|
|
print(model)
|
|
|
-print(model:forward(torch.Tensor(1, 3, 128, 128):zero():cuda()):size())
|
|
|
--]]
|
|
|
-
|
|
|
return srcnn
|