|
@@ -1,45 +1,78 @@
|
|
|
-# Benchmark results
|
|
|
+# Benchmarks
|
|
|
|
|
|
-Warning: This benchmark results is outdated. I will update soon.
|
|
|
+## Photo
|
|
|
|
|
|
-## Usage
|
|
|
+Note: waifu2x's photo models was trained on [kou's photo collection](http://photosku.com/photo/category/%E6%92%AE%E5%BD%B1%E8%80%85/kou/).
|
|
|
+Note: PSNR in this benchmark uses a MATLAB's rgb2ycbcr compatible function(dynamic range [16 235], not [0, 255]) for converting grayscale image. I think it's not correct PSNR. But many paper used this metric.
|
|
|
|
|
|
-```
|
|
|
-th tools/benchmark.lua -dir path/to/dataset_dir -method scale -color y -model1_dir path/to/model_dir
|
|
|
-```
|
|
|
+command:
|
|
|
+`th tools/benchmark.lua -dir <dataset_dir> -model1_dir <model_dir> -method scale -filter Catrom -color y -range_bug 1 -tta <0|1> -force_cudnn 1`
|
|
|
|
|
|
-## Dataset
|
|
|
+### Datasets
|
|
|
|
|
|
- photo_test: 300 various photos.
|
|
|
- art_test : 90 artworks (PNG only).
|
|
|
+BSD100: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/ (100 test images in BSD300)
|
|
|
+Urban100: https://github.com/jbhuang0604/SelfExSR
|
|
|
|
|
|
-## 2x upscaling model
|
|
|
+### 2x - PSNR
|
|
|
|
|
|
-| Dataset/Model | anime\_style\_art(Y) | anime\_style\_art\_rgb | photo | ukbench|
|
|
|
-|---------------|----------------------|------------------------|---------|--------|
|
|
|
-| photo\_test | 29.83 | 29.81 |**29.89**| 29.86 |
|
|
|
-| art\_test | 36.02 | **36.24**| 34.92 | 34.85 |
|
|
|
+| Dataset/Model | Bicubic | vgg\_7/photo | upconv\_7/photo | upconv\_7l/photo |
|
|
|
+|---------------|---------------|---------------|------------------|------------------|
|
|
|
+| BSD100 | 29.558 | 31.427 | 31.640 | 31.749 |
|
|
|
+| Urban100 | 26.852 | 30.057 | 30.477 | 30.759 |
|
|
|
|
|
|
-The evaluation metric is PSNR(Y only), higher is better.
|
|
|
+### 2x with TTA - PSNR
|
|
|
|
|
|
-## Denosing level 1 model
|
|
|
+Note: TTA is an ensemble technique that is supported by waifu2x. This method is 8x slower than non TTA method but it improves PSNR (~+0.1 on photo, ~+0.4 on art).
|
|
|
|
|
|
-| Dataset/Model | anime\_style\_art | anime\_style\_art\_rgb | photo |
|
|
|
-|--------------------------|-------------------|------------------------|---------|
|
|
|
-| photo\_test Quality 80 | 36.07 | **36.20**| 36.01 |
|
|
|
-| photo\_test Quality 50,45| 31.72 | 32.01 |**32.31**|
|
|
|
-| art\_test Quality 80 | 40.39 | **42.48**| 40.35 |
|
|
|
-| art\_test Quality 50,45 | 35.45 | **36.70**| 36.27 |
|
|
|
+| Dataset/Model | Bicubic | vgg\_7/photo | upconv\_7/photo | upconv\_7l/photo |
|
|
|
+|---------------|---------------|---------------|------------------|------------------|
|
|
|
+| BSD100 | 29.558 | 31.474 | 31.705 | 31.812 |
|
|
|
+| Urban100 | 26.852 | 30.140 | 30.599 | 30.868 |
|
|
|
|
|
|
-The evaluation metric is PSNR(RGB), higher is better.
|
|
|
+### 2x - benchmark elapsed time (sec)
|
|
|
|
|
|
-## Denosing level 2 model
|
|
|
+| Dataset/Model | vgg\_7/photo | upconv\_7/photo | upconv\_7l/photo |
|
|
|
+|---------------|---------------|------------------|------------------|
|
|
|
+| BSD100 | 4.057 | 2.509 | 4.947 |
|
|
|
+| Urban100 | 16.349 | 7.083 | 14.178 |
|
|
|
|
|
|
-| Dataset/Model | anime\_style\_art | anime\_style\_art\_rgb | photo |
|
|
|
-|--------------------------|-------------------|------------------------|---------|
|
|
|
-| photo\_test Quality 80 | 34.03 | 34.42 |**36.06**|
|
|
|
-| photo\_test Quality 50,45| 31.95 | 32.31 |**32.42**|
|
|
|
-| art\_test Quality 80 | 39.20 | **41.12**| 40.48 |
|
|
|
-| art\_test Quality 50,45 | 36.14 | **37.78**| 36.55 |
|
|
|
+### 2x with TTA - benchmark elapsed time (sec)
|
|
|
+
|
|
|
+| Dataset/Model | vgg\_7/photo | upconv\_7/photo | upconv\_7l/photo |
|
|
|
+|---------------|---------------|------------------|------------------|
|
|
|
+| BSD100 | 36.611 | 20.219 | 42.486 |
|
|
|
+| Urban100 | 132.416 | 65.125 | 129.916 |
|
|
|
+
|
|
|
+## Art
|
|
|
+
|
|
|
+command:
|
|
|
+`th tools/benchmark.lua -dir <dataset_dir> -model1_dir <model_dir> -method scale -filter Lanczos -color y -range_bug 1 -tta <0|1> -force_cudnn 1`
|
|
|
+
|
|
|
+### Dataset
|
|
|
+
|
|
|
+art_test: This dataset contains 85 various fan-arts. Sorry, This dataset is private.
|
|
|
+
|
|
|
+### 2x - PSNR
|
|
|
+
|
|
|
+| Dataset/Model | Bicubic | vgg\_7/art | upconv\_7/art | upconv\_7l/art |
|
|
|
+|---------------|---------------|-------------|----------------|----------------|
|
|
|
+| art_test | 31.022 | 37.495 | 38.330 | 39.140 |
|
|
|
+
|
|
|
+### 2x with TTA - PSNR
|
|
|
+
|
|
|
+| Dataset/Model | Bicubic | vgg\_7/art | upconv\_7/art | upconv\_7l/art |
|
|
|
+|---------------|---------------|-------------|----------------|----------------|
|
|
|
+| art_test | 31.022 | 37.777 | 38.677 | 39.510 |
|
|
|
+
|
|
|
+### 2x - benchmark elapsed time (sec)
|
|
|
+
|
|
|
+| Dataset/Model | vgg\_7/art | upconv\_7/art | upconv\_7l/art |
|
|
|
+|---------------|-------------|----------------|----------------|
|
|
|
+| art_test | 20.681 | 7.683 | 17.667 |
|
|
|
+
|
|
|
+### 2x with TTA - benchmark elapsed time (sec)
|
|
|
+
|
|
|
+| Dataset/Model | vgg\_7/art | upconv\_7/art | upconv\_7l/art |
|
|
|
+|---------------|-------------|----------------|----------------|
|
|
|
+| art_test | 174.674 | 77.716 | 163.932 |
|
|
|
|
|
|
-The evaluation metric is PSNR(RGB), higher is better.
|