|
@@ -255,77 +255,6 @@ function srcnn.vgg_7(backend, ch)
|
|
|
return model
|
|
|
end
|
|
|
|
|
|
--- VGG style net(12 layers)
|
|
|
-function srcnn.vgg_12(backend, ch)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(w2nn.InplaceClip01())
|
|
|
- model:add(nn.View(-1):setNumInputDims(3))
|
|
|
-
|
|
|
- model.w2nn_arch_name = "vgg_12"
|
|
|
- model.w2nn_offset = 12
|
|
|
- model.w2nn_scale_factor = 1
|
|
|
- model.w2nn_resize = false
|
|
|
- model.w2nn_channels = ch
|
|
|
- --model:cuda()
|
|
|
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
-
|
|
|
- return model
|
|
|
-end
|
|
|
-
|
|
|
--- Dilated Convolution (7 layers)
|
|
|
-function srcnn.dilated_7(backend, ch)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(nn.SpatialDilatedConvolution(32, 64, 3, 3, 1, 1, 0, 0, 2, 2))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(nn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 0, 0, 2, 2))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(nn.SpatialDilatedConvolution(64, 128, 3, 3, 1, 1, 0, 0, 4, 4))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(w2nn.InplaceClip01())
|
|
|
- model:add(nn.View(-1):setNumInputDims(3))
|
|
|
-
|
|
|
- model.w2nn_arch_name = "dilated_7"
|
|
|
- model.w2nn_offset = 12
|
|
|
- model.w2nn_scale_factor = 1
|
|
|
- model.w2nn_resize = false
|
|
|
- model.w2nn_channels = ch
|
|
|
-
|
|
|
- --model:cuda()
|
|
|
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
-
|
|
|
- return model
|
|
|
-end
|
|
|
-
|
|
|
-- Upconvolution
|
|
|
function srcnn.upconv_7(backend, ch)
|
|
|
local model = nn.Sequential()
|
|
@@ -387,121 +316,6 @@ function srcnn.upconv_7l(backend, ch)
|
|
|
return model
|
|
|
end
|
|
|
|
|
|
--- layerwise linear blending with skip connections
|
|
|
--- Note: PSNR: upconv_7 < skiplb_7 < upconv_7l
|
|
|
-function srcnn.skiplb_7(backend, ch)
|
|
|
- local function skip(backend, i, o)
|
|
|
- local con = nn.Concat(2)
|
|
|
- local conv = nn.Sequential()
|
|
|
- conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 1, 1))
|
|
|
- conv:add(nn.LeakyReLU(0.1, true))
|
|
|
-
|
|
|
- -- depth concat
|
|
|
- con:add(conv)
|
|
|
- con:add(nn.Identity()) -- skip
|
|
|
- return con
|
|
|
- end
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(skip(backend, ch, 16))
|
|
|
- model:add(skip(backend, 16+ch, 32))
|
|
|
- model:add(skip(backend, 32+16+ch, 64))
|
|
|
- model:add(skip(backend, 64+32+16+ch, 128))
|
|
|
- model:add(skip(backend, 128+64+32+16+ch, 128))
|
|
|
- model:add(skip(backend, 128+128+64+32+16+ch, 256))
|
|
|
- -- input of last layer = [all layerwise output(contains input layer)].flatten
|
|
|
- model:add(SpatialFullConvolution(backend, 256+128+128+64+32+16+ch, ch, 4, 4, 2, 2, 3, 3):noBias()) -- linear blend
|
|
|
- model:add(w2nn.InplaceClip01())
|
|
|
- model:add(nn.View(-1):setNumInputDims(3))
|
|
|
- model.w2nn_arch_name = "skiplb_7"
|
|
|
- model.w2nn_offset = 14
|
|
|
- model.w2nn_scale_factor = 2
|
|
|
- model.w2nn_resize = true
|
|
|
- model.w2nn_channels = ch
|
|
|
-
|
|
|
- --model:cuda()
|
|
|
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
-
|
|
|
- return model
|
|
|
-end
|
|
|
-
|
|
|
--- dilated convolution + deconvolution
|
|
|
--- Note: This model is not better than upconv_7. Maybe becuase of under-fitting.
|
|
|
-function srcnn.dilated_upconv_7(backend, ch)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(SpatialConvolution(backend, ch, 16, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 16, 32, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(nn.SpatialDilatedConvolution(32, 64, 3, 3, 1, 1, 0, 0, 2, 2))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(nn.SpatialDilatedConvolution(64, 128, 3, 3, 1, 1, 0, 0, 2, 2))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(nn.SpatialDilatedConvolution(128, 128, 3, 3, 1, 1, 0, 0, 2, 2))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
|
|
|
- model:add(w2nn.InplaceClip01())
|
|
|
- model:add(nn.View(-1):setNumInputDims(3))
|
|
|
-
|
|
|
- model.w2nn_arch_name = "dilated_upconv_7"
|
|
|
- model.w2nn_offset = 20
|
|
|
- model.w2nn_scale_factor = 2
|
|
|
- model.w2nn_resize = true
|
|
|
- model.w2nn_channels = ch
|
|
|
-
|
|
|
- --model:cuda()
|
|
|
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
-
|
|
|
- return model
|
|
|
-end
|
|
|
-
|
|
|
--- ref: https://arxiv.org/abs/1609.04802
|
|
|
--- note: no batch-norm, no zero-paading
|
|
|
-function srcnn.srresnet_2x(backend, ch)
|
|
|
- local function resblock(backend)
|
|
|
- local seq = nn.Sequential()
|
|
|
- local con = nn.ConcatTable()
|
|
|
- local conv = nn.Sequential()
|
|
|
- conv:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- conv:add(ReLU(backend))
|
|
|
- conv:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- conv:add(ReLU(backend))
|
|
|
- con:add(conv)
|
|
|
- con:add(nn.SpatialZeroPadding(-2, -2, -2, -2)) -- identity + de-padding
|
|
|
- seq:add(con)
|
|
|
- seq:add(nn.CAddTable())
|
|
|
- return seq
|
|
|
- end
|
|
|
- local model = nn.Sequential()
|
|
|
- --model:add(skip(backend, ch, 64 - ch))
|
|
|
- model:add(SpatialConvolution(backend, ch, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(resblock(backend))
|
|
|
- model:add(resblock(backend))
|
|
|
- model:add(resblock(backend))
|
|
|
- model:add(resblock(backend))
|
|
|
- model:add(resblock(backend))
|
|
|
- model:add(resblock(backend))
|
|
|
- model:add(SpatialFullConvolution(backend, 64, 64, 4, 4, 2, 2, 2, 2))
|
|
|
- model:add(ReLU(backend))
|
|
|
- model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
-
|
|
|
- model:add(w2nn.InplaceClip01())
|
|
|
- --model:add(nn.View(-1):setNumInputDims(3))
|
|
|
- model.w2nn_arch_name = "srresnet_2x"
|
|
|
- model.w2nn_offset = 28
|
|
|
- model.w2nn_scale_factor = 2
|
|
|
- model.w2nn_resize = true
|
|
|
- model.w2nn_channels = ch
|
|
|
-
|
|
|
- --model:cuda()
|
|
|
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
-
|
|
|
- return model
|
|
|
-end
|
|
|
-
|
|
|
--- large version of srresnet_2x. It's current best model but slow.
|
|
|
function srcnn.resnet_14l(backend, ch)
|
|
|
local function resblock(backend, i, o)
|
|
|
local seq = nn.Sequential()
|
|
@@ -601,204 +415,79 @@ function srcnn.fcn_v1(backend, ch)
|
|
|
|
|
|
return model
|
|
|
end
|
|
|
-function srcnn.cupconv_14(backend, ch)
|
|
|
- local function skip(backend, n_input, n_output, pad)
|
|
|
- local con = nn.ConcatTable()
|
|
|
- local conv = nn.Sequential()
|
|
|
- local depad = nn.Sequential()
|
|
|
- conv:add(nn.SelectTable(1))
|
|
|
- conv:add(SpatialConvolution(backend, n_input, n_output, 3, 3, 1, 1, 0, 0))
|
|
|
- conv:add(nn.LeakyReLU(0.1, true))
|
|
|
- con:add(conv)
|
|
|
- con:add(nn.Identity())
|
|
|
- return con
|
|
|
- end
|
|
|
- local function concat(backend, n, ch, n_middle)
|
|
|
- local con = nn.ConcatTable()
|
|
|
- for i = 1, n do
|
|
|
- local pad = i - 1
|
|
|
- if i == 1 then
|
|
|
- con:add(nn.Sequential():add(nn.SelectTable(i)))
|
|
|
- else
|
|
|
- local seq = nn.Sequential()
|
|
|
- seq:add(nn.SelectTable(i))
|
|
|
- if pad > 0 then
|
|
|
- seq:add(nn.SpatialZeroPadding(-pad, -pad, -pad, -pad))
|
|
|
- end
|
|
|
- if i == n then
|
|
|
- --seq:add(SpatialConvolution(backend, ch, n_middle, 1, 1, 1, 1, 0, 0))
|
|
|
- else
|
|
|
- seq:add(w2nn.GradWeight(0.025))
|
|
|
- seq:add(SpatialConvolution(backend, n_middle, n_middle, 1, 1, 1, 1, 0, 0))
|
|
|
- end
|
|
|
- seq:add(nn.LeakyReLU(0.1, true))
|
|
|
- con:add(seq)
|
|
|
- end
|
|
|
- end
|
|
|
- return nn.Sequential():add(con):add(nn.JoinTable(2))
|
|
|
- end
|
|
|
- local model = nn.Sequential()
|
|
|
- local m = 64
|
|
|
- local n = 14
|
|
|
|
|
|
- model:add(nn.ConcatTable():add(nn.Identity()))
|
|
|
- for i = 1, n - 1 do
|
|
|
- if i == 1 then
|
|
|
- model:add(skip(backend, ch, m))
|
|
|
- else
|
|
|
- model:add(skip(backend, m, m))
|
|
|
- end
|
|
|
- end
|
|
|
- model:add(nn.FlattenTable())
|
|
|
- model:add(concat(backend, n, ch, m))
|
|
|
- model:add(SpatialFullConvolution(backend, m * (n - 1) + 3, ch, 4, 4, 2, 2, 3, 3):noBias())
|
|
|
- model:add(w2nn.InplaceClip01())
|
|
|
- model:add(nn.View(-1):setNumInputDims(3))
|
|
|
-
|
|
|
- model.w2nn_arch_name = "cupconv_14"
|
|
|
- model.w2nn_offset = 28
|
|
|
- model.w2nn_scale_factor = 2
|
|
|
- model.w2nn_channels = ch
|
|
|
- model.w2nn_resize = true
|
|
|
-
|
|
|
- return model
|
|
|
-end
|
|
|
-
|
|
|
-function srcnn.upconv_refine(backend, ch)
|
|
|
- local function block(backend, ch)
|
|
|
- local seq = nn.Sequential()
|
|
|
- local con = nn.ConcatTable()
|
|
|
- local res = nn.Sequential()
|
|
|
- local base = nn.Sequential()
|
|
|
- local refine = nn.Sequential()
|
|
|
- local aux_con = nn.ConcatTable()
|
|
|
-
|
|
|
- res:add(w2nn.GradWeight(0.1))
|
|
|
- res:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
|
|
|
- res:add(nn.LeakyReLU(0.1, true))
|
|
|
- res:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- res:add(nn.LeakyReLU(0.1, true))
|
|
|
- res:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
|
|
|
- res:add(nn.LeakyReLU(0.1, true))
|
|
|
- res:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0):noBias())
|
|
|
- res:add(w2nn.InplaceClip01())
|
|
|
- res:add(nn.MulConstant(0.5))
|
|
|
-
|
|
|
- con:add(res)
|
|
|
- con:add(nn.Sequential():add(nn.SpatialZeroPadding(-4, -4, -4, -4)):add(nn.MulConstant(0.5)))
|
|
|
-
|
|
|
- -- main output
|
|
|
- refine:add(nn.CAddTable()) -- averaging
|
|
|
- refine:add(nn.View(-1):setNumInputDims(3))
|
|
|
- -- aux output
|
|
|
- base:add(nn.SelectTable(2))
|
|
|
- base:add(nn.MulConstant(2)) -- revert mul 0.5
|
|
|
- base:add(nn.View(-1):setNumInputDims(3))
|
|
|
-
|
|
|
- aux_con:add(refine)
|
|
|
- aux_con:add(base)
|
|
|
-
|
|
|
- seq:add(con)
|
|
|
- seq:add(aux_con)
|
|
|
- seq:add(w2nn.AuxiliaryLossTable(1))
|
|
|
- return seq
|
|
|
- end
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
|
|
|
- model:add(w2nn.InplaceClip01())
|
|
|
- model:add(block(backend, ch))
|
|
|
-
|
|
|
- model.w2nn_arch_name = "upconv_refine"
|
|
|
- model.w2nn_offset = 18
|
|
|
- model.w2nn_scale_factor = 2
|
|
|
- model.w2nn_resize = true
|
|
|
- model.w2nn_channels = ch
|
|
|
-
|
|
|
- return model
|
|
|
-end
|
|
|
-
|
|
|
--- I devised this arch because of the block size and global average pooling problem,
|
|
|
--- but SEBlock may possibly learn multi-scale input and no problems occur.
|
|
|
-local function SpatialSEBlock(backend, ave_size, n_output, r)
|
|
|
+-- Squeeze and Excitation Block
|
|
|
+local function SEBlock(backend, n_output, r)
|
|
|
local con = nn.ConcatTable(2)
|
|
|
local attention = nn.Sequential()
|
|
|
local n_mid = math.floor(n_output / r)
|
|
|
- attention:add(SpatialAveragePooling(backend, ave_size, ave_size, ave_size, ave_size))
|
|
|
+ attention:add(GlobalAveragePooling(n_output))
|
|
|
attention:add(SpatialConvolution(backend, n_output, n_mid, 1, 1, 1, 1, 0, 0))
|
|
|
attention:add(nn.ReLU(true))
|
|
|
attention:add(SpatialConvolution(backend, n_mid, n_output, 1, 1, 1, 1, 0, 0))
|
|
|
- attention:add(nn.Sigmoid(true))
|
|
|
- attention:add(nn.SpatialUpSamplingNearest(ave_size, ave_size))
|
|
|
+ attention:add(nn.Sigmoid(true)) -- don't use cudnn sigmoid
|
|
|
con:add(nn.Identity())
|
|
|
con:add(attention)
|
|
|
return con
|
|
|
end
|
|
|
-
|
|
|
--- Squeeze and Excitation Block
|
|
|
-local function SEBlock(backend, n_output, r)
|
|
|
+-- I devised this arch for the block size and global average pooling problem,
|
|
|
+-- but SEBlock may possibly learn multi-scale input or just a normalization. No problems occur.
|
|
|
+-- So this arch is not used.
|
|
|
+local function SpatialSEBlock(backend, ave_size, n_output, r)
|
|
|
local con = nn.ConcatTable(2)
|
|
|
local attention = nn.Sequential()
|
|
|
local n_mid = math.floor(n_output / r)
|
|
|
- attention:add(GlobalAveragePooling(n_output))
|
|
|
+ attention:add(SpatialAveragePooling(backend, ave_size, ave_size, ave_size, ave_size))
|
|
|
attention:add(SpatialConvolution(backend, n_output, n_mid, 1, 1, 1, 1, 0, 0))
|
|
|
attention:add(nn.ReLU(true))
|
|
|
attention:add(SpatialConvolution(backend, n_mid, n_output, 1, 1, 1, 1, 0, 0))
|
|
|
- attention:add(nn.Sigmoid(true)) -- don't use cudnn sigmoid
|
|
|
+ attention:add(nn.Sigmoid(true))
|
|
|
+ attention:add(nn.SpatialUpSamplingNearest(ave_size, ave_size))
|
|
|
con:add(nn.Identity())
|
|
|
con:add(attention)
|
|
|
return con
|
|
|
end
|
|
|
+local function unet_branch(backend, insert, backend, n_input, n_output, depad)
|
|
|
+ local block = nn.Sequential()
|
|
|
+ local con = nn.ConcatTable(2)
|
|
|
+ local model = nn.Sequential()
|
|
|
+
|
|
|
+ block:add(SpatialConvolution(backend, n_input, n_input, 2, 2, 2, 2, 0, 0))-- downsampling
|
|
|
+ block:add(nn.LeakyReLU(0.1, true))
|
|
|
+ block:add(insert)
|
|
|
+ block:add(SpatialFullConvolution(backend, n_output, n_output, 2, 2, 2, 2, 0, 0))-- upsampling
|
|
|
+ block:add(nn.LeakyReLU(0.1, true))
|
|
|
+ con:add(nn.SpatialZeroPadding(-depad, -depad, -depad, -depad))
|
|
|
+ con:add(block)
|
|
|
+ model:add(con)
|
|
|
+ model:add(nn.CAddTable())
|
|
|
+ return model
|
|
|
+end
|
|
|
+local function unet_conv(backend, n_input, n_middle, n_output, se)
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ if se then
|
|
|
+ model:add(SEBlock(backend, n_output, 4))
|
|
|
+ model:add(w2nn.ScaleTable())
|
|
|
+ end
|
|
|
+ return model
|
|
|
+end
|
|
|
|
|
|
--- cascaded residual channel attention unet
|
|
|
+-- Cascaded Residual Channel Attention U-Net
|
|
|
function srcnn.upcunet(backend, ch)
|
|
|
- function unet_branch(insert, backend, n_input, n_output, depad)
|
|
|
- local block = nn.Sequential()
|
|
|
- local con = nn.ConcatTable(2)
|
|
|
- local model = nn.Sequential()
|
|
|
-
|
|
|
- block:add(SpatialConvolution(backend, n_input, n_input, 2, 2, 2, 2, 0, 0))-- downsampling
|
|
|
- block:add(insert)
|
|
|
- block:add(SpatialFullConvolution(backend, n_output, n_output, 2, 2, 2, 2, 0, 0))-- upsampling
|
|
|
- con:add(nn.SpatialZeroPadding(-depad, -depad, -depad, -depad))
|
|
|
- con:add(block)
|
|
|
- model:add(con)
|
|
|
- model:add(nn.CAddTable())
|
|
|
- return model
|
|
|
- end
|
|
|
- function unet_conv(n_input, n_middle, n_output, se)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- if se then
|
|
|
- model:add(SEBlock(backend, n_output, 4))
|
|
|
- model:add(w2nn.ScaleTable())
|
|
|
- end
|
|
|
- return model
|
|
|
- end
|
|
|
-- Residual U-Net
|
|
|
- function unet(backend, ch, deconv)
|
|
|
- local block1 = unet_conv(128, 256, 128, true)
|
|
|
+ local function unet(backend, ch, deconv)
|
|
|
+ local block1 = unet_conv(backend, 128, 256, 128, true)
|
|
|
local block2 = nn.Sequential()
|
|
|
- block2:add(unet_conv(64, 64, 128, true))
|
|
|
- block2:add(unet_branch(block1, backend, 128, 128, 4))
|
|
|
- block2:add(unet_conv(128, 64, 64, true))
|
|
|
+ block2:add(unet_conv(backend, 64, 64, 128, true))
|
|
|
+ block2:add(unet_branch(backend, block1, backend, 128, 128, 4))
|
|
|
+ block2:add(unet_conv(backend, 128, 64, 64, true))
|
|
|
local model = nn.Sequential()
|
|
|
- model:add(unet_conv(ch, 32, 64, false))
|
|
|
- model:add(unet_branch(block2, backend, 64, 64, 16))
|
|
|
+ model:add(unet_conv(backend, ch, 32, 64, false))
|
|
|
+ model:add(unet_branch(backend, block2, backend, 64, 64, 16))
|
|
|
model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1))
|
|
|
if deconv then
|
|
@@ -837,124 +526,22 @@ function srcnn.upcunet(backend, ch)
|
|
|
return model
|
|
|
end
|
|
|
|
|
|
--- cascaded residual spatial channel attention unet
|
|
|
-function srcnn.upcunet_v2(backend, ch)
|
|
|
- function unet_branch(insert, backend, n_input, n_output, depad)
|
|
|
- local block = nn.Sequential()
|
|
|
- local con = nn.ConcatTable(2)
|
|
|
- local model = nn.Sequential()
|
|
|
-
|
|
|
- block:add(SpatialConvolution(backend, n_input, n_input, 2, 2, 2, 2, 0, 0))-- downsampling
|
|
|
- block:add(insert)
|
|
|
- block:add(SpatialFullConvolution(backend, n_output, n_output, 2, 2, 2, 2, 0, 0))-- upsampling
|
|
|
- con:add(nn.SpatialZeroPadding(-depad, -depad, -depad, -depad))
|
|
|
- con:add(block)
|
|
|
- model:add(con)
|
|
|
- model:add(nn.CAddTable())
|
|
|
- return model
|
|
|
- end
|
|
|
- function unet_conv(n_input, n_middle, n_output, se)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- if se then
|
|
|
- model:add(SpatialSEBlock(backend, 4, n_output, 4))
|
|
|
- model:add(nn.CMulTable())
|
|
|
- end
|
|
|
- return model
|
|
|
- end
|
|
|
- -- Residual U-Net
|
|
|
- function unet(backend, in_ch, out_ch, deconv)
|
|
|
- local block1 = unet_conv(128, 256, 128, true)
|
|
|
+-- cunet for 1x
|
|
|
+function srcnn.cunet(backend, ch)
|
|
|
+ local function unet(backend, ch)
|
|
|
+ local block1 = unet_conv(backend, 128, 256, 128, true)
|
|
|
local block2 = nn.Sequential()
|
|
|
- block2:add(unet_conv(64, 64, 128, true))
|
|
|
- block2:add(unet_branch(block1, backend, 128, 128, 4))
|
|
|
- block2:add(unet_conv(128, 64, 64, true))
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(unet_conv(in_ch, 32, 64, false))
|
|
|
- model:add(unet_branch(block2, backend, 64, 64, 16))
|
|
|
- if deconv then
|
|
|
- model:add(SpatialFullConvolution(backend, 64, out_ch, 4, 4, 2, 2, 3, 3):noBias())
|
|
|
- else
|
|
|
- model:add(SpatialConvolution(backend, 64, out_ch, 3, 3, 1, 1, 0, 0):noBias())
|
|
|
- end
|
|
|
- return model
|
|
|
- end
|
|
|
- local model = nn.Sequential()
|
|
|
- local con = nn.ConcatTable()
|
|
|
- local aux_con = nn.ConcatTable()
|
|
|
+ block2:add(unet_conv(backend, 64, 64, 128, true))
|
|
|
+ block2:add(unet_branch(backend, block1, backend, 128, 128, 4))
|
|
|
+ block2:add(unet_conv(backend, 128, 64, 64, true))
|
|
|
|
|
|
- -- 2 cascade
|
|
|
- model:add(unet(backend, ch, ch, true))
|
|
|
- con:add(nn.Sequential():add(unet(backend, ch, ch, false)):add(nn.SpatialZeroPadding(-1, -1, -1, -1))) -- -1 for odd output size
|
|
|
- con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
|
|
|
-
|
|
|
- aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
|
|
|
- aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single unet output
|
|
|
-
|
|
|
- model:add(con)
|
|
|
- model:add(aux_con)
|
|
|
- model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
|
|
|
-
|
|
|
- model.w2nn_arch_name = "upcunet_v2"
|
|
|
- model.w2nn_offset = 58
|
|
|
- model.w2nn_scale_factor = 2
|
|
|
- model.w2nn_channels = ch
|
|
|
- model.w2nn_resize = true
|
|
|
- -- {76,92,108,140} are also valid size but it is too small
|
|
|
- model.w2nn_valid_input_size = {156,172,188,204,220,236,252,268,284,300,316,332,348,364,380,396,412,428,444,460,476,492,508}
|
|
|
-
|
|
|
- return model
|
|
|
-end
|
|
|
--- cascaded residual channel attention unet
|
|
|
-function srcnn.upcunet_v3(backend, ch)
|
|
|
- local function unet_branch(insert, backend, n_input, n_output, depad)
|
|
|
- local block = nn.Sequential()
|
|
|
- local con = nn.ConcatTable(2)
|
|
|
local model = nn.Sequential()
|
|
|
-
|
|
|
- block:add(SpatialConvolution(backend, n_input, n_input, 2, 2, 2, 2, 0, 0))-- downsampling
|
|
|
- block:add(nn.LeakyReLU(0.1, true))
|
|
|
- block:add(insert)
|
|
|
- block:add(SpatialFullConvolution(backend, n_output, n_output, 2, 2, 2, 2, 0, 0))-- upsampling
|
|
|
- block:add(nn.LeakyReLU(0.1, true))
|
|
|
- con:add(nn.SpatialZeroPadding(-depad, -depad, -depad, -depad))
|
|
|
- con:add(block)
|
|
|
- model:add(con)
|
|
|
- model:add(nn.CAddTable())
|
|
|
- return model
|
|
|
- end
|
|
|
- local function unet_conv(n_input, n_middle, n_output, se)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- if se then
|
|
|
- model:add(SEBlock(backend, n_output, 4))
|
|
|
- model:add(w2nn.ScaleTable())
|
|
|
- end
|
|
|
- return model
|
|
|
- end
|
|
|
- -- Residual U-Net
|
|
|
- local function unet(backend, ch, deconv)
|
|
|
- local block1 = unet_conv(128, 256, 128, true)
|
|
|
- local block2 = nn.Sequential()
|
|
|
- block2:add(unet_conv(64, 64, 128, true))
|
|
|
- block2:add(unet_branch(block1, backend, 128, 128, 4))
|
|
|
- block2:add(unet_conv(128, 64, 64, true))
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(unet_conv(ch, 32, 64, false))
|
|
|
- model:add(unet_branch(block2, backend, 64, 64, 16))
|
|
|
+ model:add(unet_conv(backend, ch, 32, 64, false))
|
|
|
+ model:add(unet_branch(backend, block2, backend, 64, 64, 16))
|
|
|
model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1))
|
|
|
- if deconv then
|
|
|
- model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
|
|
|
- else
|
|
|
- model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
- end
|
|
|
+ model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
+
|
|
|
return model
|
|
|
end
|
|
|
local model = nn.Sequential()
|
|
@@ -962,8 +549,8 @@ function srcnn.upcunet_v3(backend, ch)
|
|
|
local aux_con = nn.ConcatTable()
|
|
|
|
|
|
-- 2 cascade
|
|
|
- model:add(unet(backend, ch, true))
|
|
|
- con:add(unet(backend, ch, false))
|
|
|
+ model:add(unet(backend, ch))
|
|
|
+ con:add(unet(backend, ch))
|
|
|
con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
|
|
|
|
|
|
aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
|
|
@@ -973,13 +560,13 @@ function srcnn.upcunet_v3(backend, ch)
|
|
|
model:add(aux_con)
|
|
|
model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
|
|
|
|
|
|
- model.w2nn_arch_name = "upcunet_v3"
|
|
|
- model.w2nn_offset = 60
|
|
|
- model.w2nn_scale_factor = 2
|
|
|
+ model.w2nn_arch_name = "cunet"
|
|
|
+ model.w2nn_offset = 40
|
|
|
+ model.w2nn_scale_factor = 1
|
|
|
model.w2nn_channels = ch
|
|
|
- model.w2nn_resize = true
|
|
|
+ model.w2nn_resize = false
|
|
|
model.w2nn_valid_input_size = {}
|
|
|
- for i = 76, 512, 4 do
|
|
|
+ for i = 100, 512, 4 do
|
|
|
table.insert(model.w2nn_valid_input_size, i)
|
|
|
end
|
|
|
|
|
@@ -990,7 +577,7 @@ local function bench()
|
|
|
local sys = require 'sys'
|
|
|
cudnn.benchmark = true
|
|
|
local model = nil
|
|
|
- local arch = {"upconv_7", "upcunet", "upcunet_v3"}
|
|
|
+ local arch = {"upconv_7", "upcunet","vgg_7", "cunet"}
|
|
|
local backend = "cudnn"
|
|
|
for k = 1, #arch do
|
|
|
model = srcnn[arch[k]](backend, 3):cuda()
|
|
@@ -1040,17 +627,8 @@ local model = srcnn.cunet_v3("cunn", 3):cuda()
|
|
|
print(model)
|
|
|
model:training()
|
|
|
print(model:forward(torch.Tensor(1, 3, 144, 144):zero():cuda()):size())
|
|
|
-local model = srcnn.upcunet_v2("cunn", 3):cuda()
|
|
|
-print(model)
|
|
|
-model:training()
|
|
|
-print(model:forward(torch.Tensor(1, 3, 76, 76):zero():cuda()))
|
|
|
-os.exit()
|
|
|
-local model = srcnn.upcunet_v3("cunn", 3):cuda()
|
|
|
-print(model)
|
|
|
-model:training()
|
|
|
-print(model:forward(torch.Tensor(1, 3, 76, 76):zero():cuda()))
|
|
|
-os.exit()
|
|
|
bench()
|
|
|
+os.exit()
|
|
|
--]]
|
|
|
|
|
|
return srcnn
|