|
@@ -984,6 +984,74 @@ function srcnn.cunet_v4(backend, ch)
|
|
|
return model
|
|
|
end
|
|
|
|
|
|
+function srcnn.cunet_v5(backend, ch)
|
|
|
+ function unet_branch(insert, backend, n_input, n_output, depad)
|
|
|
+ local block = nn.Sequential()
|
|
|
+ local pooling = SpatialConvolution(backend, n_input, n_input, 2, 2, 2, 2, 0, 0) -- downsampling
|
|
|
+ --block:add(w2nn.Print())
|
|
|
+ block:add(pooling)
|
|
|
+ block:add(insert)
|
|
|
+ block:add(SpatialFullConvolution(backend, n_output, n_output, 2, 2, 2, 2, 0, 0))-- upsampling
|
|
|
+ local parallel = nn.ConcatTable(2)
|
|
|
+ parallel:add(nn.SpatialZeroPadding(-depad, -depad, -depad, -depad))
|
|
|
+ parallel:add(block)
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(parallel)
|
|
|
+ model:add(nn.CAddTable())
|
|
|
+ return model
|
|
|
+ end
|
|
|
+ function unet_conv(n_input, n_middle, n_output)
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ return model
|
|
|
+ end
|
|
|
+ function unet(backend, ch, deconv)
|
|
|
+ local block1 = unet_conv(128, 256, 128)
|
|
|
+ local block2 = nn.Sequential()
|
|
|
+ block2:add(unet_conv(64, 64, 128))
|
|
|
+ block2:add(unet_branch(block1, backend, 128, 128, 4))
|
|
|
+ block2:add(unet_conv(128, 64, 64))
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(unet_conv(ch, 32, 64))
|
|
|
+ model:add(unet_branch(block2, backend, 64, 64, 16))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1))
|
|
|
+ if deconv then
|
|
|
+ model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
|
|
|
+ else
|
|
|
+ model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
+ end
|
|
|
+ return model
|
|
|
+ end
|
|
|
+ local model = nn.Sequential()
|
|
|
+ local con = nn.ConcatTable()
|
|
|
+ local aux_con = nn.ConcatTable()
|
|
|
+
|
|
|
+ model:add(unet(backend, ch, true))
|
|
|
+
|
|
|
+ con:add(unet(backend, ch, false))
|
|
|
+ con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
|
|
|
+
|
|
|
+ aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
|
|
|
+ aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single unet output
|
|
|
+
|
|
|
+ model:add(con)
|
|
|
+ model:add(aux_con)
|
|
|
+ model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
|
|
|
+
|
|
|
+ model.w2nn_arch_name = "cunet_v5"
|
|
|
+ model.w2nn_offset = 60
|
|
|
+ model.w2nn_scale_factor = 2
|
|
|
+ model.w2nn_channels = ch
|
|
|
+ model.w2nn_resize = true
|
|
|
+ -- 72, 128, 256 are valid
|
|
|
+ --model.w2nn_input_size = 128
|
|
|
+
|
|
|
+ return model
|
|
|
+end
|
|
|
|
|
|
function srcnn.prog_net(backend, ch)
|
|
|
function base_upscaler(backend, ch)
|
|
@@ -1119,6 +1187,12 @@ model:training()
|
|
|
print(model:forward(torch.Tensor(1, 3, 144, 144):zero():cuda()):size())
|
|
|
os.exit()
|
|
|
|
|
|
+local model = srcnn.cunet_v5("cunn", 3):cuda()
|
|
|
+print(model)
|
|
|
+model:training()
|
|
|
+print(model:forward(torch.Tensor(1, 3, 144, 144):zero():cuda()))
|
|
|
+os.exit()
|
|
|
+
|
|
|
--]]
|
|
|
|
|
|
return srcnn
|