|
@@ -226,6 +226,110 @@ local function GlobalAveragePooling(n_output)
|
|
|
end
|
|
|
srcnn.GlobalAveragePooling = GlobalAveragePooling
|
|
|
|
|
|
+-- Squeeze and Excitation Block
|
|
|
+local function SEBlock(backend, n_output, r)
|
|
|
+ local con = nn.ConcatTable(2)
|
|
|
+ local attention = nn.Sequential()
|
|
|
+ local n_mid = math.floor(n_output / r)
|
|
|
+ attention:add(GlobalAveragePooling(n_output))
|
|
|
+ attention:add(SpatialConvolution(backend, n_output, n_mid, 1, 1, 1, 1, 0, 0))
|
|
|
+ attention:add(nn.ReLU(true))
|
|
|
+ attention:add(SpatialConvolution(backend, n_mid, n_output, 1, 1, 1, 1, 0, 0))
|
|
|
+ attention:add(nn.Sigmoid(true)) -- don't use cudnn sigmoid
|
|
|
+ con:add(nn.Identity())
|
|
|
+ con:add(attention)
|
|
|
+ return con
|
|
|
+end
|
|
|
+-- I devised this arch for the block size and global average pooling problem,
|
|
|
+-- but SEBlock may possibly learn multi-scale input or just a normalization. No problems occur.
|
|
|
+-- So this arch is not used.
|
|
|
+local function SpatialSEBlock(backend, ave_size, n_output, r)
|
|
|
+ local con = nn.ConcatTable(2)
|
|
|
+ local attention = nn.Sequential()
|
|
|
+ local n_mid = math.floor(n_output / r)
|
|
|
+ attention:add(SpatialAveragePooling(backend, ave_size, ave_size, ave_size, ave_size))
|
|
|
+ attention:add(SpatialConvolution(backend, n_output, n_mid, 1, 1, 1, 1, 0, 0))
|
|
|
+ attention:add(nn.ReLU(true))
|
|
|
+ attention:add(SpatialConvolution(backend, n_mid, n_output, 1, 1, 1, 1, 0, 0))
|
|
|
+ attention:add(nn.Sigmoid(true))
|
|
|
+ attention:add(nn.SpatialUpSamplingNearest(ave_size, ave_size))
|
|
|
+ con:add(nn.Identity())
|
|
|
+ con:add(attention)
|
|
|
+ return con
|
|
|
+end
|
|
|
+local function ResBlock(backend, i, o)
|
|
|
+ local seq = nn.Sequential()
|
|
|
+ local con = nn.ConcatTable()
|
|
|
+ local conv = nn.Sequential()
|
|
|
+ conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 0, 0))
|
|
|
+ conv:add(nn.LeakyReLU(0.1, true))
|
|
|
+ conv:add(SpatialConvolution(backend, o, o, 3, 3, 1, 1, 0, 0))
|
|
|
+ conv:add(nn.LeakyReLU(0.1, true))
|
|
|
+ con:add(conv)
|
|
|
+ if i == o then
|
|
|
+ con:add(nn.SpatialZeroPadding(-2, -2, -2, -2)) -- identity + de-padding
|
|
|
+ else
|
|
|
+ local seq = nn.Sequential()
|
|
|
+ seq:add(SpatialConvolution(backend, i, o, 1, 1, 1, 1, 0, 0))
|
|
|
+ seq:add(nn.SpatialZeroPadding(-2, -2, -2, -2))
|
|
|
+ con:add(seq)
|
|
|
+ end
|
|
|
+ seq:add(con)
|
|
|
+ seq:add(nn.CAddTable())
|
|
|
+ return seq
|
|
|
+end
|
|
|
+local function ResBlockSE(backend, i, o)
|
|
|
+ local seq = nn.Sequential()
|
|
|
+ local con = nn.ConcatTable()
|
|
|
+ local conv = nn.Sequential()
|
|
|
+ conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 0, 0))
|
|
|
+ conv:add(nn.LeakyReLU(0.1, true))
|
|
|
+ conv:add(SpatialConvolution(backend, o, o, 3, 3, 1, 1, 0, 0))
|
|
|
+ conv:add(nn.LeakyReLU(0.1, true))
|
|
|
+ conv:add(SEBlock(backend, o, 8))
|
|
|
+ conv:add(w2nn.ScaleTable())
|
|
|
+ con:add(conv)
|
|
|
+ if i == o then
|
|
|
+ con:add(nn.SpatialZeroPadding(-2, -2, -2, -2)) -- identity + de-padding
|
|
|
+ else
|
|
|
+ local seq = nn.Sequential()
|
|
|
+ seq:add(SpatialConvolution(backend, i, o, 1, 1, 1, 1, 0, 0))
|
|
|
+ seq:add(nn.SpatialZeroPadding(-2, -2, -2, -2))
|
|
|
+ con:add(seq)
|
|
|
+ end
|
|
|
+ seq:add(con)
|
|
|
+ seq:add(nn.CAddTable())
|
|
|
+ return seq
|
|
|
+end
|
|
|
+local function ResGroup(backend, n, n_output)
|
|
|
+ local seq = nn.Sequential()
|
|
|
+ local res = nn.Sequential()
|
|
|
+ local con = nn.ConcatTable(2)
|
|
|
+ local depad = -2 * n
|
|
|
+ for i = 1, n do
|
|
|
+ res:add(ResBlock(backend, n_output, n_output))
|
|
|
+ end
|
|
|
+ con:add(res)
|
|
|
+ con:add(nn.SpatialZeroPadding(depad, depad, depad, depad))
|
|
|
+ seq:add(con)
|
|
|
+ seq:add(nn.CAddTable())
|
|
|
+ return seq
|
|
|
+end
|
|
|
+local function ResGroupSE(backend, n, n_output)
|
|
|
+ local seq = nn.Sequential()
|
|
|
+ local res = nn.Sequential()
|
|
|
+ local con = nn.ConcatTable(2)
|
|
|
+ local depad = -2 * n
|
|
|
+ for i = 1, n do
|
|
|
+ res:add(ResBlockSE(backend, n_output, n_output))
|
|
|
+ end
|
|
|
+ con:add(res)
|
|
|
+ con:add(nn.SpatialZeroPadding(depad, depad, depad, depad))
|
|
|
+ seq:add(con)
|
|
|
+ seq:add(nn.CAddTable())
|
|
|
+ return seq
|
|
|
+end
|
|
|
+
|
|
|
-- VGG style net(7 layers)
|
|
|
function srcnn.vgg_7(backend, ch)
|
|
|
local model = nn.Sequential()
|
|
@@ -317,36 +421,15 @@ function srcnn.upconv_7l(backend, ch)
|
|
|
end
|
|
|
|
|
|
function srcnn.resnet_14l(backend, ch)
|
|
|
- local function resblock(backend, i, o)
|
|
|
- local seq = nn.Sequential()
|
|
|
- local con = nn.ConcatTable()
|
|
|
- local conv = nn.Sequential()
|
|
|
- conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 0, 0))
|
|
|
- conv:add(nn.LeakyReLU(0.1, true))
|
|
|
- conv:add(SpatialConvolution(backend, o, o, 3, 3, 1, 1, 0, 0))
|
|
|
- conv:add(nn.LeakyReLU(0.1, true))
|
|
|
- con:add(conv)
|
|
|
- if i == o then
|
|
|
- con:add(nn.SpatialZeroPadding(-2, -2, -2, -2)) -- identity + de-padding
|
|
|
- else
|
|
|
- local seq = nn.Sequential()
|
|
|
- seq:add(SpatialConvolution(backend, i, o, 1, 1, 1, 1, 0, 0))
|
|
|
- seq:add(nn.SpatialZeroPadding(-2, -2, -2, -2))
|
|
|
- con:add(seq)
|
|
|
- end
|
|
|
- seq:add(con)
|
|
|
- seq:add(nn.CAddTable())
|
|
|
- return seq
|
|
|
- end
|
|
|
local model = nn.Sequential()
|
|
|
model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(resblock(backend, 32, 64))
|
|
|
- model:add(resblock(backend, 64, 64))
|
|
|
- model:add(resblock(backend, 64, 128))
|
|
|
- model:add(resblock(backend, 128, 128))
|
|
|
- model:add(resblock(backend, 128, 256))
|
|
|
- model:add(resblock(backend, 256, 256))
|
|
|
+ model:add(ResBlock(backend, 32, 64))
|
|
|
+ model:add(ResBlock(backend, 64, 64))
|
|
|
+ model:add(ResBlock(backend, 64, 128))
|
|
|
+ model:add(ResBlock(backend, 128, 128))
|
|
|
+ model:add(ResBlock(backend, 128, 256))
|
|
|
+ model:add(ResBlock(backend, 256, 256))
|
|
|
model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
|
|
|
model:add(w2nn.InplaceClip01())
|
|
|
model:add(nn.View(-1):setNumInputDims(3))
|
|
@@ -362,6 +445,65 @@ function srcnn.resnet_14l(backend, ch)
|
|
|
return model
|
|
|
end
|
|
|
|
|
|
+-- ResNet_with SEBlock for fast conversion
|
|
|
+function srcnn.upresnet_s(backend, ch)
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(SpatialConvolution(backend, ch, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(ResGroupSE(backend, 3, 64))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3):noBias())
|
|
|
+ model:add(w2nn.InplaceClip01())
|
|
|
+ model.w2nn_arch_name = "upresnet_s"
|
|
|
+ model.w2nn_offset = 18
|
|
|
+ model.w2nn_scale_factor = 2
|
|
|
+ model.w2nn_resize = true
|
|
|
+ model.w2nn_channels = ch
|
|
|
+
|
|
|
+ return model
|
|
|
+end
|
|
|
+-- Cascaded ResNet with SEBlock
|
|
|
+function srcnn.upcresnet(backend, ch)
|
|
|
+ local function resnet(backend, ch, deconv)
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(SpatialConvolution(backend, ch, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(ResGroupSE(backend, 2, 64))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ if deconv then
|
|
|
+ model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
|
|
|
+ else
|
|
|
+ model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
+ end
|
|
|
+ return model
|
|
|
+ end
|
|
|
+ local model = nn.Sequential()
|
|
|
+ local con = nn.ConcatTable()
|
|
|
+ local aux_con = nn.ConcatTable()
|
|
|
+
|
|
|
+ -- 2 cascade
|
|
|
+ model:add(resnet(backend, ch, true))
|
|
|
+ con:add(nn.Sequential():add(resnet(backend, ch, false)):add(nn.SpatialZeroPadding(-1, -1, -1, -1))) -- output is odd
|
|
|
+ con:add(nn.SpatialZeroPadding(-8, -8, -8, -8))
|
|
|
+
|
|
|
+ aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
|
|
|
+ aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single unet output
|
|
|
+
|
|
|
+ model:add(con)
|
|
|
+ model:add(aux_con)
|
|
|
+ model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
|
|
|
+
|
|
|
+ model.w2nn_arch_name = "upcresnet"
|
|
|
+ model.w2nn_offset = 22
|
|
|
+ model.w2nn_scale_factor = 2
|
|
|
+ model.w2nn_resize = true
|
|
|
+ model.w2nn_channels = ch
|
|
|
+
|
|
|
+ return model
|
|
|
+end
|
|
|
+
|
|
|
-- for segmentation
|
|
|
function srcnn.fcn_v1(backend, ch)
|
|
|
-- input_size = 120
|
|
@@ -416,37 +558,6 @@ function srcnn.fcn_v1(backend, ch)
|
|
|
return model
|
|
|
end
|
|
|
|
|
|
--- Squeeze and Excitation Block
|
|
|
-local function SEBlock(backend, n_output, r)
|
|
|
- local con = nn.ConcatTable(2)
|
|
|
- local attention = nn.Sequential()
|
|
|
- local n_mid = math.floor(n_output / r)
|
|
|
- attention:add(GlobalAveragePooling(n_output))
|
|
|
- attention:add(SpatialConvolution(backend, n_output, n_mid, 1, 1, 1, 1, 0, 0))
|
|
|
- attention:add(nn.ReLU(true))
|
|
|
- attention:add(SpatialConvolution(backend, n_mid, n_output, 1, 1, 1, 1, 0, 0))
|
|
|
- attention:add(nn.Sigmoid(true)) -- don't use cudnn sigmoid
|
|
|
- con:add(nn.Identity())
|
|
|
- con:add(attention)
|
|
|
- return con
|
|
|
-end
|
|
|
--- I devised this arch for the block size and global average pooling problem,
|
|
|
--- but SEBlock may possibly learn multi-scale input or just a normalization. No problems occur.
|
|
|
--- So this arch is not used.
|
|
|
-local function SpatialSEBlock(backend, ave_size, n_output, r)
|
|
|
- local con = nn.ConcatTable(2)
|
|
|
- local attention = nn.Sequential()
|
|
|
- local n_mid = math.floor(n_output / r)
|
|
|
- attention:add(SpatialAveragePooling(backend, ave_size, ave_size, ave_size, ave_size))
|
|
|
- attention:add(SpatialConvolution(backend, n_output, n_mid, 1, 1, 1, 1, 0, 0))
|
|
|
- attention:add(nn.ReLU(true))
|
|
|
- attention:add(SpatialConvolution(backend, n_mid, n_output, 1, 1, 1, 1, 0, 0))
|
|
|
- attention:add(nn.Sigmoid(true))
|
|
|
- attention:add(nn.SpatialUpSamplingNearest(ave_size, ave_size))
|
|
|
- con:add(nn.Identity())
|
|
|
- con:add(attention)
|
|
|
- return con
|
|
|
-end
|
|
|
local function unet_branch(backend, insert, backend, n_input, n_output, depad)
|
|
|
local block = nn.Sequential()
|
|
|
local con = nn.ConcatTable(2)
|
|
@@ -525,7 +636,6 @@ function srcnn.upcunet(backend, ch)
|
|
|
|
|
|
return model
|
|
|
end
|
|
|
-
|
|
|
-- cunet for 1x
|
|
|
function srcnn.cunet(backend, ch)
|
|
|
local function unet(backend, ch)
|
|
@@ -573,19 +683,77 @@ function srcnn.cunet(backend, ch)
|
|
|
return model
|
|
|
end
|
|
|
|
|
|
--- small version of cunet
|
|
|
-function srcnn.upcunet_s(backend, ch)
|
|
|
+function srcnn.upcunet_s_p0(backend, ch)
|
|
|
-- Residual U-Net
|
|
|
- local function unet(backend, ch, deconv)
|
|
|
+ local function unet1(backend, ch, deconv)
|
|
|
+ local block1 = unet_conv(backend, 64, 128, 64, true)
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(unet_conv(backend, ch, 32, 64, false))
|
|
|
+ model:add(unet_branch(backend, block1, backend, 64, 64, 4))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1))
|
|
|
+ if deconv then
|
|
|
+ model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
|
|
|
+ else
|
|
|
+ model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
+ end
|
|
|
+ return model
|
|
|
+ end
|
|
|
+ local model = nn.Sequential()
|
|
|
+ local con = nn.ConcatTable()
|
|
|
+ local aux_con = nn.ConcatTable()
|
|
|
+
|
|
|
+ -- 2 cascade
|
|
|
+ model:add(unet1(backend, ch, true))
|
|
|
+ con:add(unet1(backend, ch, false))
|
|
|
+ con:add(nn.SpatialZeroPadding(-8, -8, -8, -8))
|
|
|
+ --con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
|
|
|
+
|
|
|
+ aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
|
|
|
+ aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single unet output
|
|
|
+
|
|
|
+ model:add(con)
|
|
|
+ model:add(aux_con)
|
|
|
+ model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
|
|
|
+
|
|
|
+ model.w2nn_arch_name = "upcunet_s_p0"
|
|
|
+ model.w2nn_offset = 24
|
|
|
+ model.w2nn_scale_factor = 2
|
|
|
+ model.w2nn_channels = ch
|
|
|
+ model.w2nn_resize = true
|
|
|
+ model.w2nn_valid_input_size = {}
|
|
|
+ for i = 76, 512, 4 do
|
|
|
+ table.insert(model.w2nn_valid_input_size, i)
|
|
|
+ end
|
|
|
+
|
|
|
+ return model
|
|
|
+end
|
|
|
+function srcnn.upcunet_s_p1(backend, ch)
|
|
|
+ -- Residual U-Net
|
|
|
+ local function unet1(backend, ch, deconv)
|
|
|
+ local block1 = unet_conv(backend, 64, 128, 64, true)
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(unet_conv(backend, ch, 32, 64, false))
|
|
|
+ model:add(unet_branch(backend, block1, backend, 64, 64, 4))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1))
|
|
|
+ if deconv then
|
|
|
+ model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
|
|
|
+ else
|
|
|
+ model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
+ end
|
|
|
+ return model
|
|
|
+ end
|
|
|
+ local function unet2(backend, ch, deconv)
|
|
|
local block1 = unet_conv(backend, 128, 256, 128, true)
|
|
|
local block2 = nn.Sequential()
|
|
|
- block2:add(unet_conv(backend, 32, 64, 128, true))
|
|
|
+ block2:add(unet_conv(backend, 64, 64, 128, true))
|
|
|
block2:add(unet_branch(backend, block1, backend, 128, 128, 4))
|
|
|
- block2:add(unet_conv(backend, 128, 64, 32, true))
|
|
|
+ block2:add(unet_conv(backend, 128, 64, 64, true))
|
|
|
local model = nn.Sequential()
|
|
|
- model:add(unet_conv(backend, ch, 32, 32, false))
|
|
|
- model:add(unet_branch(backend, block2, backend, 32, 32, 16))
|
|
|
- model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(unet_conv(backend, ch, 32, 64, false))
|
|
|
+ model:add(unet_branch(backend, block2, backend, 64, 64, 16))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1))
|
|
|
if deconv then
|
|
|
model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
|
|
@@ -599,8 +767,9 @@ function srcnn.upcunet_s(backend, ch)
|
|
|
local aux_con = nn.ConcatTable()
|
|
|
|
|
|
-- 2 cascade
|
|
|
- model:add(unet(backend, ch, true))
|
|
|
- con:add(unet(backend, ch, false))
|
|
|
+ model:add(unet1(backend, ch, true))
|
|
|
+ con:add(unet2(backend, ch, false))
|
|
|
+ --con:add(nn.SpatialZeroPadding(-8, -8, -8, -8))
|
|
|
con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
|
|
|
|
|
|
aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
|
|
@@ -610,8 +779,72 @@ function srcnn.upcunet_s(backend, ch)
|
|
|
model:add(aux_con)
|
|
|
model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
|
|
|
|
|
|
- model.w2nn_arch_name = "upcunet_s"
|
|
|
- model.w2nn_offset = 60
|
|
|
+ model.w2nn_arch_name = "upcunet_s_p1"
|
|
|
+ model.w2nn_offset = 36
|
|
|
+ model.w2nn_scale_factor = 2
|
|
|
+ model.w2nn_channels = ch
|
|
|
+ model.w2nn_resize = true
|
|
|
+ model.w2nn_valid_input_size = {}
|
|
|
+ for i = 76, 512, 4 do
|
|
|
+ table.insert(model.w2nn_valid_input_size, i)
|
|
|
+ end
|
|
|
+
|
|
|
+ return model
|
|
|
+end
|
|
|
+
|
|
|
+function srcnn.upcunet_s_p2(backend, ch)
|
|
|
+ -- Residual U-Net
|
|
|
+ local function unet1(backend, ch, deconv)
|
|
|
+ local block1 = unet_conv(backend, 64, 128, 64, true)
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(unet_conv(backend, ch, 32, 64, false))
|
|
|
+ model:add(unet_branch(backend, block1, backend, 64, 64, 4))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1))
|
|
|
+ if deconv then
|
|
|
+ model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
|
|
|
+ else
|
|
|
+ model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
+ end
|
|
|
+ return model
|
|
|
+ end
|
|
|
+ local function unet2(backend, ch, deconv)
|
|
|
+ local block1 = unet_conv(backend, 128, 256, 128, true)
|
|
|
+ local block2 = nn.Sequential()
|
|
|
+ block2:add(unet_conv(backend, 64, 64, 128, true))
|
|
|
+ block2:add(unet_branch(backend, block1, backend, 128, 128, 4))
|
|
|
+ block2:add(unet_conv(backend, 128, 64, 64, true))
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(unet_conv(backend, ch, 32, 64, false))
|
|
|
+ model:add(unet_branch(backend, block2, backend, 64, 64, 16))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1))
|
|
|
+ if deconv then
|
|
|
+ model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
|
|
|
+ else
|
|
|
+ model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
+ end
|
|
|
+ return model
|
|
|
+ end
|
|
|
+ local model = nn.Sequential()
|
|
|
+ local con = nn.ConcatTable()
|
|
|
+ local aux_con = nn.ConcatTable()
|
|
|
+
|
|
|
+ -- 2 cascade
|
|
|
+ model:add(unet2(backend, ch, true))
|
|
|
+ con:add(unet1(backend, ch, false))
|
|
|
+ con:add(nn.SpatialZeroPadding(-8, -8, -8, -8))
|
|
|
+ --con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
|
|
|
+
|
|
|
+ aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
|
|
|
+ aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single unet output
|
|
|
+
|
|
|
+ model:add(con)
|
|
|
+ model:add(aux_con)
|
|
|
+ model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
|
|
|
+
|
|
|
+ model.w2nn_arch_name = "upcunet_s_p2"
|
|
|
+ model.w2nn_offset = 48
|
|
|
model.w2nn_scale_factor = 2
|
|
|
model.w2nn_channels = ch
|
|
|
model.w2nn_resize = true
|
|
@@ -672,29 +905,30 @@ local function bench()
|
|
|
local sys = require 'sys'
|
|
|
cudnn.benchmark = true
|
|
|
local model = nil
|
|
|
- local arch = {"upconv_7", "upcunet","upcunet_s", "vgg_7", "cunet", "cunet_s"}
|
|
|
+ local arch = {"upconv_7", "upresnet_s","upcresnet", "resnet_14l", "upcunet", "upcunet_s_p0", "upcunet_s_p1", "upcunet_s_p2"}
|
|
|
+ --local arch = {"upconv_7", "upcunet","upcunet_v0", "upcunet_s", "vgg_7", "cunet", "cunet_s"}
|
|
|
local backend = "cudnn"
|
|
|
local ch = 3
|
|
|
local batch_size = 1
|
|
|
- local crop_size = 512
|
|
|
+ local output_size = 320
|
|
|
for k = 1, #arch do
|
|
|
model = srcnn[arch[k]](backend, ch):cuda()
|
|
|
model:evaluate()
|
|
|
local dummy = nil
|
|
|
+ local crop_size = (output_size + model.w2nn_offset * 2) / 2
|
|
|
+ local dummy = torch.Tensor(batch_size, ch, output_size, output_size):zero():cuda()
|
|
|
+
|
|
|
+ print(arch[k], output_size, crop_size)
|
|
|
-- warn
|
|
|
- for i = 1, 20 do
|
|
|
+ for i = 1, 4 do
|
|
|
local x = torch.Tensor(batch_size, ch, crop_size, crop_size):uniform():cuda()
|
|
|
model:forward(x)
|
|
|
end
|
|
|
t = sys.clock()
|
|
|
- for i = 1, 20 do
|
|
|
+ for i = 1, 100 do
|
|
|
local x = torch.Tensor(batch_size, ch, crop_size, crop_size):uniform():cuda()
|
|
|
local z = model:forward(x)
|
|
|
- if dummy == nil then
|
|
|
- dummy = z:clone()
|
|
|
- else
|
|
|
- dummy:add(z)
|
|
|
- end
|
|
|
+ dummy:add(z)
|
|
|
end
|
|
|
print(arch[k], sys.clock() - t)
|
|
|
model:clearState()
|
|
@@ -721,10 +955,10 @@ function srcnn.create(model_name, backend, color)
|
|
|
end
|
|
|
end
|
|
|
--[[
|
|
|
-local model = srcnn.upcunet_s("cunn", 3):cuda()
|
|
|
+local model = srcnn.resnet_s("cunn", 3):cuda()
|
|
|
print(model)
|
|
|
model:training()
|
|
|
-print(model:forward(torch.Tensor(1, 3, 144, 144):zero():cuda()))
|
|
|
+print(model:forward(torch.Tensor(1, 3, 128, 128):zero():cuda()):size())
|
|
|
bench()
|
|
|
os.exit()
|
|
|
--]]
|