|
@@ -136,6 +136,24 @@ local function SpatialFullConvolution(backend, nInputPlane, nOutputPlane, kW, kH
|
|
|
error("unsupported backend:" .. backend)
|
|
|
end
|
|
|
end
|
|
|
+local function ReLU(backend)
|
|
|
+ if backend == "cunn" then
|
|
|
+ return nn.ReLU(true)
|
|
|
+ elseif backend == "cudnn" then
|
|
|
+ return cudnn.ReLU(true)
|
|
|
+ else
|
|
|
+ error("unsupported backend:" .. backend)
|
|
|
+ end
|
|
|
+end
|
|
|
+local function SpatialMaxPooling(backend, kW, kH, dW, dH, padW, padH)
|
|
|
+ if backend == "cunn" then
|
|
|
+ return nn.SpatialMaxPooling(kW, kH, dW, dH, padW, padH)
|
|
|
+ elseif backend == "cudnn" then
|
|
|
+ return cudnn.SpatialMaxPooling(kW, kH, dW, dH, padW, padH)
|
|
|
+ else
|
|
|
+ error("unsupported backend:" .. backend)
|
|
|
+ end
|
|
|
+end
|
|
|
|
|
|
-- VGG style net(7 layers)
|
|
|
function srcnn.vgg_7(backend, ch)
|
|
@@ -261,9 +279,6 @@ function srcnn.upconv_7(backend, ch)
|
|
|
model.w2nn_resize = true
|
|
|
model.w2nn_channels = ch
|
|
|
|
|
|
- --model:cuda()
|
|
|
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
-
|
|
|
return model
|
|
|
end
|
|
|
|
|
@@ -310,7 +325,7 @@ function srcnn.skiplb_7(backend, ch)
|
|
|
|
|
|
-- depth concat
|
|
|
con:add(conv)
|
|
|
- con:add(nn.Identify()) -- skip
|
|
|
+ con:add(nn.Identity()) -- skip
|
|
|
return con
|
|
|
end
|
|
|
local model = nn.Sequential()
|
|
@@ -354,7 +369,7 @@ function srcnn.dilated_upconv_7(backend, ch)
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
|
|
|
model:add(w2nn.InplaceClip01())
|
|
|
- --model:add(nn.View(-1):setNumInputDims(3))
|
|
|
+ model:add(nn.View(-1):setNumInputDims(3))
|
|
|
|
|
|
model.w2nn_arch_name = "dilated_upconv_7"
|
|
|
model.w2nn_offset = 20
|
|
@@ -367,6 +382,103 @@ function srcnn.dilated_upconv_7(backend, ch)
|
|
|
|
|
|
return model
|
|
|
end
|
|
|
+
|
|
|
+-- ref: https://arxiv.org/abs/1609.04802
|
|
|
+-- note: no batch-norm, no zero-paading
|
|
|
+function srcnn.srresnet_2x(backend, ch)
|
|
|
+ local function skip(backend, i, o)
|
|
|
+ local con = nn.Concat(2)
|
|
|
+ local conv = nn.Sequential()
|
|
|
+ conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 1, 1))
|
|
|
+ conv:add(ReLU(backend))
|
|
|
+ -- depth concat
|
|
|
+ con:add(conv)
|
|
|
+ con:add(nn.Identity()) -- skip
|
|
|
+ return con
|
|
|
+ end
|
|
|
+ local function resblock(backend)
|
|
|
+ local seq = nn.Sequential()
|
|
|
+ local con = nn.ConcatTable()
|
|
|
+ local conv = nn.Sequential()
|
|
|
+ conv:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ conv:add(ReLU(backend))
|
|
|
+ conv:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ con:add(conv)
|
|
|
+ con:add(nn.SpatialZeroPadding(-2, -2, -2, -2)) -- identity + de-padding
|
|
|
+ seq:add(con)
|
|
|
+ seq:add(nn.CAddTable())
|
|
|
+ return seq
|
|
|
+ end
|
|
|
+ local model = nn.Sequential()
|
|
|
+ --model:add(skip(backend, ch, 64 - ch))
|
|
|
+ model:add(SpatialConvolution(backend, ch, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(resblock(backend))
|
|
|
+ model:add(resblock(backend))
|
|
|
+ model:add(resblock(backend))
|
|
|
+ model:add(resblock(backend))
|
|
|
+ model:add(resblock(backend))
|
|
|
+ model:add(resblock(backend))
|
|
|
+ model:add(SpatialFullConvolution(backend, 64, 64, 4, 4, 2, 2, 2, 2))
|
|
|
+ model:add(ReLU(backend))
|
|
|
+ model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
+
|
|
|
+ model:add(w2nn.InplaceClip01())
|
|
|
+ --model:add(nn.View(-1):setNumInputDims(3))
|
|
|
+ model.w2nn_arch_name = "srresnet_2x"
|
|
|
+ model.w2nn_offset = 28
|
|
|
+ model.w2nn_scale_factor = 2
|
|
|
+ model.w2nn_resize = true
|
|
|
+ model.w2nn_channels = ch
|
|
|
+
|
|
|
+ --model:cuda()
|
|
|
+ --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
+
|
|
|
+ return model
|
|
|
+end
|
|
|
+
|
|
|
+-- for segmentation
|
|
|
+function srcnn.fcn_v1(backend, ch)
|
|
|
+ -- input size = 128
|
|
|
+ local model = nn.Sequential()
|
|
|
+
|
|
|
+ model:add(SpatialConvolution(backend, ch, 32, 5, 5, 2, 2, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
|
|
|
+
|
|
|
+ model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
|
|
|
+
|
|
|
+ model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialConvolution(backend, 256, 256, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
|
|
|
+
|
|
|
+ model:add(SpatialFullConvolution(backend, 256, 128, 4, 4, 2, 2, 2, 2))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialFullConvolution(backend, 128, 64, 4, 4, 2, 2, 2, 2))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialFullConvolution(backend, 64, 32, 4, 4, 2, 2, 2, 2))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialFullConvolution(backend, 32, ch, 4, 4, 2, 2, 2, 2))
|
|
|
+
|
|
|
+ model:add(w2nn.InplaceClip01())
|
|
|
+ model:add(nn.View(-1):setNumInputDims(3))
|
|
|
+
|
|
|
+ model.w2nn_arch_name = "fcn_v1"
|
|
|
+ model.w2nn_offset = 39
|
|
|
+ model.w2nn_scale_factor = 1
|
|
|
+ model.w2nn_channels = ch
|
|
|
+ --model:cuda()
|
|
|
+ --print(model:forward(torch.Tensor(32, ch, 128, 128):uniform():cuda()):size())
|
|
|
+
|
|
|
+ return model
|
|
|
+end
|
|
|
+
|
|
|
function srcnn.create(model_name, backend, color)
|
|
|
model_name = model_name or "vgg_7"
|
|
|
backend = backend or "cunn"
|
|
@@ -387,11 +499,10 @@ function srcnn.create(model_name, backend, color)
|
|
|
error("unsupported model_name: " .. model_name)
|
|
|
end
|
|
|
end
|
|
|
-
|
|
|
--[[
|
|
|
-local model = srcnn.upconv_7l("cunn", 3):cuda()
|
|
|
+local model = srcnn.srresnet_2x("cunn", 3):cuda()
|
|
|
print(model)
|
|
|
-print(model:forward(torch.Tensor(1, 3, 64, 64):zero():cuda()):size())
|
|
|
+print(model:forward(torch.Tensor(1, 3, 128, 128):zero():cuda()):size())
|
|
|
--]]
|
|
|
|
|
|
return srcnn
|