Write any JavaScript with 6 Characters: []()!+
demo : jsfuck.com
fork from : https://github.com/aemkei/jsfuck.git
|
9 years ago | |
---|---|---|
test | 11 years ago | |
.gitignore | 11 years ago | |
.npmignore | 11 years ago | |
Gruntfile.js | 11 years ago | |
LICENSE.txt | 13 years ago | |
README.md | 9 years ago | |
favicon.ico | 13 years ago | |
fuck.js | 11 years ago | |
index.html | 10 years ago | |
jsfuck.js | 9 years ago | |
output.txt | 9 years ago | |
package.json | 9 years ago | |
preview.png | 13 years ago |
[]()!+
JSFuck is an esoteric and educational programming style based on the atomic parts of JavaScript. It uses only six different characters to write and execute code.
It does not depend on a browser, so you can even run it on Node.js.
Demo: jsfuck.com
The following source will do an alert(1)
:
[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[
]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]][([][(![]+[])[+[]]+([![]]+[][[]
])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+
(!![]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+
!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![
]+[])[+!+[]]])[+!+[]+[+[]]]+([][[]]+[])[+!+[]]+(![]+[])[!+[]+!+[]+!+[]]+(!![]
+[])[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+([![]]+[][[]])[
+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!!
[]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[][(![]+[])[+[]]+([![
]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[
]+!+[]]+(!![]+[])[+!+[]]])[+!+[]+[+[]]]+(!![]+[])[+!+[]]]((![]+[])[+!+[]]+(![
]+[])[!+[]+!+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]+(!![]+[])[+[]]+(!
[]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])
[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]]+[+!+[]]+(
!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[
])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]])()
false => ![]
true => !![]
undefined => [][[]]
NaN => +[![]]
0 => +[]
1 => +!+[]
2 => !+[]+!+[]
10 => [+!+[]]+[+[]]
Array => []
Number => +[]
String => []+[]
Boolean => ![]
Function => []["filter"]
run => []["filter"]["constructor"]( CODE )()
eval => []["filter"]["constructor"]("return eval")()( CODE )
window => []["filter"]["constructor"]("return this")()
See the full list here.
Note: Feel free to join the discussion here: https://gitter.im/aemkei/jsfuck
[]
– BracketsLet's start with the opening and closing brackets and see what is possible here. They are super useful for this project and it are considered as a core element because they provide a way to 1. deal with arrays and 2. access properties and methods.
[]
– Array LiteralsCreate new arrays:
[] // an empty array
[[]] // an array with one element (another array)
[X][i]
– Array / Object Access[][[]] // undefined, same as [][""]
Later we will be able to do this:
"abc"[0] // get single letter
[]["length"] // get property
[]["fill"] // get methods
[X][0]
- Array wrapping trickBy wrapping an expression in an array then getting the element at index zero, you can apply several operators on one expression. This means brackets []
can replace parenthesis ()
to isolate expressions:
[X][0] // X
++[ ++[ ++[X][0] ][0] ][0] // X + 3
+
– Plus SignThis symbol is useful, because it allows us to create number, add two values, concatenating strings and (combined with '[]') create strings.
The current version of JSFuck uses it a lot but we not sure if they are fundamental.
+[] // 0 - the number 0
using the Array wrapping trick
++[ 0 ][ 0 ] // 1
++[ [] ][ +[] ] // 1
undefined
Getting an element by index in an empty array will return undefined:
[][ 0 ] // undefined
[][ +[] ] // get first element (undefined)
[][ [] ] // will look for property _empty string_ in the array
NaN
Casting undefined
to Number will result in not-a-number:
+[][[]] // +undefined = NaN
1 + 1 // 2
++[[]][+[]] + ++[[]][+[]] // 2
A shorter way using ++:
++[ 1][ 0] // 2
++[++[[]][ 0]][ 0] // 2
++[++[[]][+[]]][+[]] // 2
Using this technique, we are able to access all digits:
0
, 1
, 2
, 3
, 4
, 5
, 6
, 7
, 8
, 9
+[]
– Casting to StringCombining the brackets and the plus sign, allows us to turn other values into strings.
Casts to String:
[] +[] // "" - empty string
+[] +[] // "0"
[][[]] +[] // "undefined"
++[][[]] +[] // "NaN
++[[]][+[]] +[] // "1"
"word"[i]
– Get Single CharactersAs we have strings, we can get single characters:
"undefined" [ 0] // "u"
["undefined"][ 0][ 0] // "u"
[[][+[]]+[] ][+[]][+[]] // "u"
[[][+[]]+[]][+[]][ 1 ] // n
[[][+[]]+[]][+[]][ ++[[]][+[]] ] // n
Since we have "NaN" and "undefined", we got the following characters:
N
,a
,d
,e
,f
,i
,n
,u
.
+
– Combine CharactersNow we can concat characters to new words.
// can be written using []+ only:
"undefined"[4] // "f"
"undefined"[5] // "i"
"undefined"[6] // "n"
"undefined"[3] // "d"
// combine using +
"f"+"i"+"n"+"d" // "find"
"e"
– Numbers in exponential notationAs we have the character "e" from "undefined", we can use exponential notation to construct very big numbers and get a reference to Infinity
:
+("1e309") // Infinity
+("1e309") +[] // "Infinity"
+("11e100") // 1.1+e101
+("11e100") +[] // "1.1+e101" (gives us `.`)
+("0.0000001") // 1e-7
+("0.0000001") +[] // "1e-7" (gives us `-`)
Resulting chars:
I
,f
,i
,n
,t
,y
,.
,+
,-
.
[]["method"]
– Access MethodsNewly combinded characters can form method names. These can be accessed using the square brackets notation:
[]["f"+"i"+"n"+"d"] // where "f" is the first char of "false" and so on
[]["find"] // same as the dot syntax:
[] .find
Note: With the characters from "undefined", "NaN" and "Infinity", the only method we are able to find in the objects we have is Array.prototype.find
.
method+[]
– Get Method DefinitionsWe can cast a method to a String and get its definition as a String:
[]["find"] +[]
This will return the following String:
"function find() { [native code] }"
Note: String representations of native functions are not part of the ECMAScript standard and slightly differ between browsers. For example, Firefox will output a slightly different string with additional line breaks using \n
.
Resulting characters:
a
,c
,d
,e
,f
,i
,n
,o
,t
,u
,v
{
, }
, (
, )
, [
,]
Resulting methods:
.concat
.find
.!
– Logical NOT operatorThis is the fourth character in the original JSFuck set and used to create booleans.
!X
– Cast to BooleanThe logical "Not" operator can be used to create booelans false
and true
:
![] // false
!![] // true
!X+[]
– Get "true" and "false"Booleans can be casted to string:
![] +[] // "false"
!![] +[] // "true"
This will give us access to more characters:
a
, e
, f
, l
, r
, s
, t
, u
.
And together with the set above, we will have {}()[]+. INacdefilnorstuvy
with access to these methods:
call
concat
constructor
entries
every
fill
filter
find
fontcolor
includes
italics
reduce
reverse
slice
sort
Important: We should better take one of the symbols =
, >
or <
to create booleans, because they are more powerful (see section "Alternatives" below).
X["constructor"]
– Primitive wrappers namesWith .constructor
we have a reference to the function that created the instance. For primitives values, it returns the corresponding built-in wrappers:
0 ["constructor"] // Number
"" ["constructor"] // String
[] ["constructor"] // Array
false ["constructor"] // Boolean
[].find ["constructor"] // Function
Use +[]
to convert them to strings and retrieve their function name in order to get more chars:
0["constructor"]+[] // "function Number() { ... }"
New chars available :
m
, b
, S
, g
, B
, A
, F
.
… and more methods and properties:
arguments
big
bind
bold
name
small
some
sub
substr
substring
toString
trim
()
– ParenthesisSince we have access to methods, we can call them to get more power. To do this we need to introduce two more symbols (
and )
here.
Example without arguments:
""["fontcolor"]() // "<font color="undefined"></font>"
[]["entries"]() +[] // "[object Array Iterator]"
New characters:
j
, <
, >
, =
, "
, /
number.toString(x)
– Getting any lowercase letterNumber's toString
method has an optional argument specifying the base to use, between 2 and 36. With base 36, the output is displayed with every number and lowercase letter, so we can retrieve any lowercase letter from base 36:
17["toString"](36) // "h"
33["toString"](36) // "x"
...
Exposed characters: abcdefghijklmnopqrstuvwxyz
Function("code")()
– Evaluate CodeFunction constructor is the master key : it takes a String as argument and returns a new anonymous function with this string as the function body. So it basically lets you evaluate any code as a String. This is like eval
, without the need for a reference to the global scope (a.k.a. window
). We can get it with [].find ["constructor"]
.
This is the first major step and an essential part of a JS-to-JSFuck compiler. ...
Function("return this")()
– windowWhen evaluating a fresh new function anonymous() { return this }
, we get in return the invocation context which is a reference to the global scope here: window
Getting a reference to window
is another huge step forward for JSFuck. With the brackets characters, we could only dig in the available objects: numbers, arrays, some functions... With a reference to the global scope, we now have access to any global variable and the inner properties of these globals.
Use .concat
to combine strings:
"f"["concat"]("i")["concat"]("l")["concat"]("l") // fill
Problem: We need to combibe "c", "o", "n", "c", "a" and "t" to get "concat".
The !
might be replaced by with more "powerful" characters:
=
– Boolean + Assign ValuesX == X // true
X == Y // false
X = Y // assign a new value
>
– Boolean + Create NumbersX > Y // true
X > X // false
X >> Y // number
A more complex example is to get character "f" with []>+
only:
[[ []>[] ] + [] ] [[]>>[]] [[]>>[]]
[[ false ] + [] ] [ 0] [ 0]
[ "false" ] [ 0] [ 0]
"false" [ 0]
Use booleans and bitshift operators to create numbers:
true >> false // 1
true << true // 2
true << true << true // 4
Problem: Some number (like 5
) are harder to get. But it is possible when using strings, eg "11" >> true
.
Other ways of executing functions:
`
on...
new ...
toString|valueOf
[Symbol...]
Instead of using opening and closing parentheses, we could use backticks ` to execute functions. In ES6 they can be used to interpolate strings and serve an expression for tagged template literals.
([]["entries"]``).constructor // Object
This would give us characters from "Object" and access to its methods.
Unfortunately, we can only pass a single string (from our basic alphabet eg. []!+
) as the parameter. It is not possible to call methods with multiple arguments or precompiled string. To do that, we have to use expression interpolation using ${}
which would introduce new characters.
The possibilities of backticks were discussed in detail in the Gitter chat room.
Another approach executing functions without parentheses would be to map the .toString
or .valueOf
method and call implicitly.
A=[]
A["toString"]=A["pop"]
A+"" // will execute A.pop
Note: There is no way to pass arguments and it requires to =
be present in our basic alphabet. And it only works for methods that return basic types.
So far the only use-case is to wire .toSource
in Firefox to get special characters like the backslash \
.
Note: We need =
to map the methods.
Function or methods could also be executed by assinging them to an event hander. There are several ways to do that, e.g:
// override onload event on start
onload=f
// write image tags
document.body.innerHTML='<img onerror=f src=X />'
// throw and handle error
onerror=f; throw 'x'
// trigger event
onhashchange=f;location.hash=1;
Note: We need =
to assign the handler.
Problem: We do not have access to window
or DOM elements to attatch the event handlers.
We could also use the new
operator to call the function as a pseudo object type:
new f
Problem: The new
operator is not available with the simple set of symbols.
A symbol is a unique and immutable data type and may be used as an identifier for object properties. This can be used to implicitly call function.
f[Symbol.toPrimitive]=f;f++;
f[Symbol.iterator]=f;[...f]
Note: We need =
to assign the function.
Problem: We do not have access to Symbol
using our reduced character set.
JSFuck was not the first approach! Many people around the world are trying to break the so-called "Wall".