123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609 |
- // DEFLATE is a complex format; to read this code, you should probably check the RFC first:
- // https://tools.ietf.org/html/rfc1951
- // Much of the following code is similar to that of UZIP.js:
- // https://github.com/photopea/UZIP.js
- // Many optimizations have been made, so the bundle size is ultimately smaller but performance is similar.
- // Sometimes 0 will appear where -1 would be more appropriate. This is because using a uint
- // is better for memory in most engines (I *think*).
- // aliases for shorter compressed code (most minifers don't do this)
- const u8 = Uint8Array, u16 = Uint16Array, u32 = Uint32Array;
- // fixed length extra bits
- const fleb = new u8([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, /* unused */ 0, 0, /* impossible */ 0]);
- // fixed distance extra bits
- // see fleb note
- const fdeb = new u8([0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* unused */ 0, 0]);
- // code length index map
- const clim = new u8([16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]);
- // get base, reverse index map from extra bits
- const freb = (eb: Uint8Array, start: number) => {
- const b = new u16(31);
- for (let i = 0; i < 31; ++i) {
- b[i] = start += 1 << eb[i - 1];
- }
- // numbers here are at max 18 bits
- const r = new u32(b[30]);
- for (let i = 1; i < 30; ++i) {
- for (let j = b[i]; j < b[i + 1]; ++j) {
- r[j] = ((j - b[i]) << 5) | i;
- }
- }
- return [b, r] as const;
- }
- const [fl, revfl] = freb(fleb, 2);
- // we can ignore the fact that the other numbers are wrong; they never happen anyway
- fl[28] = 258;
- revfl[258] = 28;
- const [fd, revfd] = freb(fdeb, 0);
- // map of value to reverse (assuming 16 bits)
- const rev = new u16(32768);
- for (let i = 0; i < 32768; ++i) {
- // reverse table algorithm from UZIP.js
- let x = i;
- x = ((x & 0xaaaaaaaa) >>> 1) | ((x & 0x55555555) << 1);
- x = ((x & 0xcccccccc) >>> 2) | ((x & 0x33333333) << 2);
- x = ((x & 0xf0f0f0f0) >>> 4) | ((x & 0x0f0f0f0f) << 4);
- x = ((x & 0xff00ff00) >>> 8) | ((x & 0x00ff00ff) << 8);
- rev[i] = ((x >>> 16) | (x << 16)) >>> 17;
- }
- // create huffman tree from u8 "map": index -> code length for code index
- // mb (max bits) must be at most 15
- // TODO: optimize/split up?
- const hMap = ((cd: Uint8Array, mb: number, r: 0 | 1) => {
- const s = cd.length;
- // index
- let i = 0;
- // u8 "map": index -> # of codes with bit length = index
- const l = new u8(mb);
- // length of cd must be 288 (total # of codes)
- for (; i < s; ++i) ++l[cd[i] - 1];
- // u16 "map": index -> minimum code for bit length = index
- const le = new u16(mb);
- for (i = 0; i < mb; ++i) {
- le[i] = (le[i - 1] + l[i - 1]) << 1;
- }
- let co: Uint16Array;
- if (r) {
- co = new u16(s);
- for (i = 0; i < s; ++i) co[i] = rev[le[cd[i] - 1]++] >>> (15 - cd[i]);
- } else {
- // u16 "map": index -> number of actual bits, symbol for code
- co = new u16(1 << mb);
- // bits to remove for reverser
- const rvb = 15 - mb;
- for (i = 0; i < s; ++i) {
- // ignore 0 lengths
- if (cd[i]) {
- // num encoding both symbol and bits read
- const sv = (i << 4) | cd[i];
- // free bits
- const r = mb - cd[i];
- // start value
- let v = le[cd[i] - 1]++ << r;
- // m is end value
- for (const m = v | ((1 << r) - 1); v <= m; ++v) {
- // every 16 bit value starting with the code yields the same result
- co[rev[v] >>> rvb] = sv;
- }
- }
- }
- }
- return co;
- });
- // fixed length tree
- const flt = new u8(286);
- for (let i = 0; i < 144; ++i) flt[i] = 8;
- for (let i = 144; i < 256; ++i) flt[i] = 9;
- for (let i = 256; i < 280; ++i) flt[i] = 7;
- for (let i = 280; i < 286; ++i) flt[i] = 8;
- // fixed distance tree
- const fdt = new u8(30);
- for (let i = 0; i < 30; ++i) fdt[i] = 5;
- // fixed length map
- const flm = hMap(flt, 9, 0), flnm = hMap(flt, 9, 1);
- // fixed distance map
- const fdm = hMap(fdt, 5, 0), fdnm = hMap(fdt, 5, 1);
- // find max of array
- const max = (a: Uint8Array | number[]) => {
- let m = a[0];
- for (let i = 0; i < a.length; ++i) {
- if (a[i] > m) m = a[i];
- }
- return m;
- };
- // read d, starting at bit p continuing for l bits
- const bits = (d: Uint8Array, p: number, l: number) => {
- const o = p >>> 3;
- return ((d[o] | (d[o + 1] << 8)) >>> (p & 7)) & ((1 << l) - 1);
- }
- // read d, starting at bit p continuing for at least 16 bits
- const bits16 = (d: Uint8Array, p: number) => {
- const o = p >>> 3;
- return ((d[o] | (d[o + 1] << 8) | (d[o + 2] << 16) | (d[o + 3] << 24)) >>> (p & 7));
- }
- // expands raw DEFLATE data
- const inflate = (dat: Uint8Array, outSize?: number) => {
- let buf = outSize && new u8(outSize);
- // have to estimate size
- const noBuf = !buf;
- // Slightly less than 2x - assumes ~60% compression ratio
- if (noBuf) buf = new u8((dat.length >>> 2) << 3);
- // ensure buffer can fit at least l elements
- const cbuf = (l: number) => {
- let bl = buf.length;
- // need to increase size to fit
- if (l > bl) {
- // Double or set to necessary, whichever is greater
- const nbuf = new u8(Math.max(bl << 1, l));
- nbuf.set(buf);
- buf = nbuf;
- }
- }
- // last chunk chunktype literal dist lengths lmask dmask
- let final = 0, type = 0, hLit = 0, hDist = 0, hcLen = 0, ml = 0, md = 0;
- // bitpos bytes
- let pos = 0, bt = 0;
- // len dist
- let lm: Uint16Array, dm: Uint16Array;
- while (!final) {
- // BFINAL - this is only 1 when last chunk is next
- final = bits(dat, pos, 1);
- // type: 0 = no compression, 1 = fixed huffman, 2 = dynamic huffman
- type = bits(dat, pos + 1, 2);
- pos += 3;
- if (!type) {
- // go to end of byte boundary
- if (pos & 7) pos += 8 - (pos & 7);
- const s = (pos >>> 3) + 4, l = dat[s - 4] | (dat[s - 3] << 8);
- // ensure size
- if (noBuf) cbuf(bt + l);
- // Copy over uncompressed data
- buf.set(dat.subarray(s, s + l), bt);
- // Get new bitpos, update byte count
- pos = (s + l) << 3, bt += l;
- continue;
- }
- // Make sure the buffer can hold this + the largest possible addition
- // maximum chunk size (practically, theoretically infinite) is 2^17;
- if (noBuf) cbuf(bt + 131072);
- if (type == 1) {
- lm = flm;
- dm = fdm;
- ml = 511;
- md = 31;
- }
- else if (type == 2) {
- hLit = bits(dat, pos, 5) + 257;
- hDist = bits(dat, pos + 5, 5) + 1;
- hcLen = bits(dat, pos + 10, 4) + 4;
- pos += 14;
- // length+distance tree
- const ldt = new u8(hLit + hDist);
- // code length tree
- const clt = new u8(19);
- for (let i = 0; i < hcLen; ++i) {
- // use index map to get real code
- clt[clim[i]] = bits(dat, pos + i * 3, 3);
- }
- pos += hcLen * 3;
- // code lengths bits
- const clb = max(clt);
- // code lengths map
- const clm = hMap(clt, clb, 0);
- for (let i = 0; i < ldt.length;) {
- const r = clm[bits(dat, pos, clb)];
- // bits read
- pos += r & 15;
- // symbol
- const s = r >>> 4;
- // code length to copy
- if (s < 16) {
- ldt[i++] = s;
- } else {
- // copy count
- let c = 0, n = 0;
- if (s == 16) n = 3 + bits(dat, pos, 2), pos += 2, c = ldt[i - 1];
- else if (s == 17) n = 3 + bits(dat, pos, 3), pos += 3;
- else if (s == 18) n = 11 + bits(dat, pos, 7), pos += 7;
- while (n--) ldt[i++] = c;
- }
- }
- // length tree distance tree
- const lt = ldt.subarray(0, hLit), dt = ldt.subarray(hLit);
- // max length bits
- const mlb = max(lt)
- // max dist bits
- const mdb = max(dt);
- ml = (1 << mlb) - 1;
- lm = hMap(lt, mlb, 0);
- md = (1 << mdb) - 1;
- dm = hMap(dt, mdb, 0);
- }
- for (;;) {
- // bits read, code
- const c = lm[bits16(dat, pos) & ml];
- pos += c & 15;
- // code
- const sym = c >>> 4;
- if (sym < 256) buf[bt++] = sym;
- else if (sym == 256) break;
- else {
- let end = bt + sym - 254;
- // no extra bits needed if less
- if (sym > 264) {
- // index
- const i = sym - 257;
- end = bt + bits(dat, pos, fleb[i]) + fl[i];
- pos += fleb[i];
- }
- // dist
- const d = dm[bits16(dat, pos) & md];
- pos += d & 15;
- const dsym = d >>> 4;
- let dt = fd[dsym];
- if (dsym > 3) {
- dt += bits16(dat, pos) & ((1 << fdeb[dsym]) - 1);
- pos += fdeb[dsym];
- }
- if (noBuf) cbuf(bt + 131072);
- while (bt < end) {
- buf[bt] = buf[bt++ - dt];
- buf[bt] = buf[bt++ - dt];
- buf[bt] = buf[bt++ - dt];
- buf[bt] = buf[bt++ - dt];
- }
- bt = end;
- }
- }
- }
- return buf.slice(0, bt);
- }
- // starting at p, write the minimum number of bits that can hold v to ds
- const wbits = (d: Uint8Array, p: number, v: number) => {
- v <<= p & 7;
- const o = p >>> 3;
- d[o] |= v;
- d[o + 1] |= v >>> 8;
- }
- // starting at p, write the minimum number of bits (>8) that can hold v to ds
- const wbits16 = (d: Uint8Array, p: number, v: number) => {
- v <<= p & 7;
- const o = p >>> 3;
- d[o] |= v;
- d[o + 1] |= v >>> 8;
- d[o + 2] |= v >>> 16;
- }
- type HuffNode = {
- // symbol
- s: number;
- // frequency
- f: number;
- // left child
- l?: HuffNode;
- // right child
- r?: HuffNode;
- };
- // creates code lengths from a frequency table
- const hTree = (d: Uint16Array, mb: number) => {
- // Need extra info to make a tree
- const t: HuffNode[] = [];
- for (let i = 0; i < d.length; ++i) {
- if (d[i]) {
- t.push({ s: i, f: d[i] });
- }
- }
- const s = t.length;
- const t2 = t.slice();
- // after i2 reaches last ind, will be stopped
- t.push({ s: -1, f: 32768 });
- if (s == 0) return [new u8(0), 0] as const;
- if (s == 1) return [new u8([!t[0].s as unknown as number]), 1] as const;
- t.sort((a, b) => a.f - b.f);
- let l = t[0], r = t[1], i0 = 0, i1 = 1, i2 = 2;
- t[0] = { s: -1, f: l.f + r.f, l, r };
- // complex algorithm from UZIP.js
- // i0 is lookbehind, i2 is lookahead - after processing two low-freq
- // symbols that combined have high freq, will start processing i2 (high-freq,
- // non-composite) symbols instead
- // see https://reddit.com/r/photopea/comments/ikekht/uzipjs_questions/
- while (i1 != s - 1) {
- if (t[i0].f < t[i2].f) l = t[i0++];
- else l = t[i2++];
- if (i0 != i1 && t[i0].f < t[i2].f) r = t[i0++];
- else r = t[i2++];
- t[i1++] = { s: -1, f: l.f + r.f, l, r };
- }
- let maxSym = t2[0].s;
- for (let i = 0; i < s; ++i) {
- if (t2[i].s > maxSym) maxSym = t2[i].s;
- }
- // code lengths
- const tr = new u16(maxSym + 1);
- // max bits in tree
- let mbt = ln(t[i1 - 1], tr, 0);
- if (mbt > mb) {
- // more algorithms from UZIP.js
- // TODO: find out how this code works (debt)
- // ind debt
- let i = 0, dt = 0;
- // cost
- const cst = 1 << (mbt - mb);
- t2.sort((a, b) => tr[b.s] - tr[a.s] || a.f - b.f);
- for (; i < s; ++i) {
- const i2 = t2[i].s;
- if (tr[i2] > mb) {
- dt += cst - (1 << (mbt - tr[i2]));
- tr[i2] = mb;
- } else break;
- }
- dt >>>= (mbt - mb);
- while (dt > 0) {
- const i2 = t2[i].s;
- if (tr[i2] < mb) dt -= 1 << (mb - tr[i2]++ - 1);
- else ++i;
- }
- for (; i >= 0 && !dt; --i) {
- const i2 = t2[i].s;
- if (tr[i2] == mb) {
- --tr[i2];
- ++dt;
- }
- }
- mbt = mb;
- }
- return [new u8(tr), mbt] as const;
- }
- // get the max length and assign length codes
- const ln = (n: HuffNode, l: Uint16Array, d: number): number => {
- return n.s == -1
- ? Math.max(ln(n.l, l, d + 1), ln(n.r, l, d + 1))
- : (l[n.s] = d);
- }
- // length codes generation
- const lc = (c: Uint8Array) => {
- let s = c.length;
- // Note that the semicolon was intentional
- while (s && !c[--s]);
- ++s;
- const cl = new u16(s);
- // ind num streak
- let cli = 0, cln = c[0], cls = 1;
- const w = (v: number) => { cl[cli++] = v; }
- for (let i = 1; i < s; ++i) {
- if (c[i] == cln && i != s - 1)
- ++cls;
- else {
- if (!cln && cls > 3) {
- for (; cls > 138; cls -= 138) w(4082);
- if (cls > 3) {
- w(cls > 10 ? ((cls - 11) << 5) | 18 : ((cls - 3) << 5) | 17);
- cls = 0;
- }
- } else if (cls > 4) {
- w(cln), --cls;
- for (; cls > 6; cls -= 6) w(112);
- if (cls > 3) w(((cls - 3) << 5) | 16), cls = 0;
- }
- cl.fill(cln, cli, cli += cls);
- cls = 1;
- cln = c[i];
- }
- }
- w(cln);
- return [cl.slice(0, cli), s] as const;
- }
- // calculate the length of output from tree, code lengths
- const clen = (cf: Uint16Array, cl: Uint8Array) => {
- let l = 0;
- for (let i = 0; i < cl.length; ++i) l += cf[i] * cl[i];
- return l;
- }
- // writes a fixed block
- // returns the new bit pos
- const wfblk = (out: Uint8Array, pos: number, dat: Uint8Array) => {
- // no need to write 00 as type: TypedArray defaults to 0
- const s = dat.length;
- const o = (pos + 2) >>> 3;
- out[o + 1] = s & 255;
- out[o + 2] = s >>> 8;
- out[o + 3] = out[o + 1] ^ 255;
- out[o + 4] = out[o + 2] ^ 255;
- out.set(dat, o + 5);
- return (o + 4 + s) << 3;
- }
- // writes a block
- const wblk = (dat: Uint8Array, out: Uint8Array, final: number, syms: Uint32Array, lf: Uint16Array, df: Uint16Array, eb: number, li: number, bs: number, bl: number, p: number) => {
- wbits(out, p++, final);
- ++lf[256];
- const [dlt, mlb] = hTree(lf, 15);
- const [ddt, mdb] = hTree(df, 15);
- const [lclt, nlc] = lc(dlt);
- const [lcdt, ndc] = lc(ddt);
- const lcfreq = new u16(19);
- for (let i = 0; i < lclt.length; ++i) lcfreq[lclt[i] & 31]++;
- for (let i = 0; i < lcdt.length; ++i) lcfreq[lcdt[i] & 31]++;
- const [lct, mlcb] = hTree(lcfreq, 7);
- let nlcc = 19;
- for (; nlcc > 4 && !lct[clim[nlcc - 1]]; --nlcc);
- const flen = (bl + 5) << 3;
- const ftlen = clen(lf, flt) + clen(df, fdt) + eb;
- const dtlen = clen(lf, dlt) + clen(df, ddt) + eb + 14 + 3 * nlcc + clen(lcfreq, lct) + (2 * lcfreq[16] + 3 * lcfreq[17] + 7 * lcfreq[18]);
- if (flen < ftlen && flen < dtlen) return wfblk(out, p, dat.subarray(bs, bs + bl));
- let lm: Uint16Array, ll: Uint8Array, dm: Uint16Array, dl: Uint8Array;
- wbits(out, p, 1 + (dtlen < ftlen as unknown as number)), p += 2;
- if (dtlen < ftlen) {
- lm = hMap(dlt, mlb, 1), ll = dlt, dm = hMap(ddt, mdb, 1), dl = ddt;
- const llm = hMap(lct, mlcb, 1);
- wbits(out, p, nlc - 257);
- wbits(out, p + 5, ndc - 1);
- wbits(out, p + 10, nlcc - 4);
- p += 14;
- for (let i = 0; i < nlcc; ++i) wbits(out, p + 3 * i, lct[clim[i]]);
- p += 3 * nlcc;
- const lcts = [lclt, lcdt];
- for (let it = 0; it < 2; ++it) {
- const clct = lcts[it];
- for (let i = 0; i < clct.length; ++i) {
- const len = clct[i] & 31;
- wbits(out, p, llm[len]), p += lct[len];
- if (len > 15) {
- wbits(out, p, clct[i] >>> 5), p += len == 16 ? 2 : len == 17 ? 3 : 7;
- }
- }
- }
- } else {
- lm = flnm, ll = flt, dm = fdnm, dl = fdt;
- }
- for (let i = 0; i < li; ++i) {
- if (syms[i] > 255) {
- const len = syms[i] & 31;
- wbits16(out, p, lm[len + 257]), p += ll[len + 257];
- if (len > 7) wbits(out, p, (syms[i] >>> 5) & 31), p += fleb[len];
- const dst = (syms[i] >>> 10) & 31;
- wbits16(out, p, dm[dst]), p += dl[dst];
- if (dst > 3) wbits16(out, p, (syms[i] >>> 15) & 8191), p += fdeb[dst];
- } else {
- wbits16(out, p, lm[syms[i]]), p += ll[syms[i]];
- }
- }
- wbits16(out, p, lm[256]);
- return p + ll[256];
- }
- // deflate options (nice << 13) | chain
- const deo = new u32([65540, 131080, 131088, 131104, 262176, 1048704, 1048832, 2114560, 2117632]);
- // compresses data into a raw DEFLATE buffer
- const deflate = (dat: Uint8Array, lvl: number, pre = 0, post = 0) => {
- const s = dat.length;
- const o = new u8(pre + s + 5 * Math.ceil(s / 16384) + post);
- // writing to this writes to the output buffer
- const w = o.subarray(pre, o.length - post);
- if (!lvl || dat.length < 4) {
- for (let i = 0, pos = 0; i < s; i += 65535) {
- // end
- const e = i + 65535;
- if (e < s) {
- // write full block
- pos = wfblk(w, pos, dat.subarray(i, e));
- } else {
- // write final block
- w[i] = 1;
- wfblk(w, pos, dat.subarray(i, s));
- }
- }
- return o;
- }
- const opt = deo[lvl - 1];
- const n = opt >>> 13, c = opt & 8191;
- // prev 2-byte val map curr 2-byte val map
- const prev = new u16(32768), head = new u16(32768);
- // 12288 is an arbitrary choice for max num of symbols per block
- // 112 extra to never need to create a tiny huffman block near the end
- const syms = new u32(12400);
- // length/literal freq distance freq
- const lf = new u16(286), df = new u16(30);
- // punishment for missing a value
- const pnsh = Math.floor(lvl / 2)
- // l/lcnt exbits index l/lind waitdx bitpos
- let lc = 0, eb = 0, i = 0, li = 0, wi = 0, bs = 0, pos = 0;
- for (; i < s; ++i) {
- // first 2 bytes
- const b2 = dat[i] | (dat[i + 1] << 8);
- // index mod 32768
- let imod = i & 32767;
- // previous index with this value
- let pimod = head[b2];
- prev[imod] = pimod;
- head[b2] = imod;
- // We always should modify head and prev, but only add symbols if
- // this data is not yet processed ("wait" for wait index)
- if (wi <= i) {
- // 24573 arbitrary: 24576 - 3
- if ((li > 12288 || lc > 24573) && s - i > 111) {
- pos = wblk(dat, w, 0, syms, lf, df, eb, li, bs, i - bs, pos);
- li = lc = eb = 0, bs = i;
- for (let j = 0; j < 286; ++j) lf[j] = 0;
- for (let j = 0; j < 30; ++j) df[j] = 0;
- }
- // bytes remaining
- const rem = s - i;
- // len dist chain
- let l = 2, d = 0, ch = c, dif = (imod - pimod + 32768) & 32767;
- const maxn = Math.min(n, rem);
- const maxd = Math.min(32767, i);
- // max possible max length
- const ml = Math.min(258, rem);
- while (dif <= maxd && --ch && imod != pimod) {
- if (dat[i + l] == dat[i + l - dif]) {
- let nl = 0;
- // const ml = Math.min(mml, dif);
- for (; nl < ml && dat[i + nl] == dat[i + nl - dif]; ++nl);
- if (nl > l) {
- l = nl;
- d = dif;
- // break out early when we reach "nice" (we are satisfied enough)
- if (nl >= maxn) break;
- // now, find the rarest 2-byte sequence within this
- // length of literals and search for that instead.
- // Much faster than just using the start
- const mmd = nl - 2;
- let md = 0;
- for (let j = 0; j < mmd; ++j) {
- const ti = (i - dif + j + 32768) & 32767;
- const pti = prev[ti];
- const cd = (ti - pti + 32768) & 32767;
- if (cd > md) md = cd, pimod = ti;
- }
- } else if (nl < 2) ch >>>= pnsh; // this is cheating, but we need performance :/
- }
- // check the previous match
- imod = pimod, pimod = prev[pimod];
- dif += (imod - pimod + 32768) & 32767;
- }
- // d will be nonzero only when a match was found
- if (d) {
- // store both dist and len data in one Uint32
- // Make sure this is recognized as a len/dist with 28th bit (2^28)
- syms[li++] = 268435456 | (revfd[d] << 10) | revfl[l];
- const lin = revfl[l] & 31, din = revfd[d] & 31;
- eb += fleb[lin] + fdeb[din];
- ++lf[257 + lin];
- ++df[din];
- wi = i + l;
- } else {
- syms[li++] = dat[i];
- ++lf[dat[i]];
- }
- ++lc;
- }
- }
- if (bs != i) pos = wblk(dat, w, 1, syms, lf, df, eb, li, bs, i - bs, pos);
- return o.subarray(0, (pos >>> 3) + 1 + post);
- }
- export { inflate, deflate };
|