|
@@ -1,22 +1,48 @@
|
|
|
-const u8 = Uint8Array, u16 = Uint16Array;
|
|
|
+// DEFLATE is a complex format; to read this code, you should probably check the RFC first:
|
|
|
+// https://tools.ietf.org/html/rfc1951
|
|
|
|
|
|
-// fixed lengths
|
|
|
-const fl = new u16([3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, /* unused */ 258, 258, /* impossible */ 258]);
|
|
|
+// Much of the following code is similar to that of UZIP.js:
|
|
|
+// https://github.com/photopea/UZIP.js
|
|
|
+// Many optimizations have been made, so the bundle size is ultimately smaller but performance is similar.
|
|
|
+
|
|
|
+// Sometimes 0 will appear where -1 would be more appropriate. This is because using a uint
|
|
|
+// is better for memory in most engines (I *think*).
|
|
|
+
|
|
|
+// aliases for shorter compressed code (most minifers don't do this)
|
|
|
+const u8 = Uint8Array, u16 = Uint16Array, u32 = Uint32Array;
|
|
|
|
|
|
// fixed length extra bits
|
|
|
-// yes, this can be calculated, but hardcoding is more efficient
|
|
|
const fleb = new u8([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, /* unused */ 0, 0, /* impossible */ 0]);
|
|
|
|
|
|
-// fixed distances
|
|
|
-const fd = new u16([1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, /* unused */ 32768, 32768]);
|
|
|
-
|
|
|
// fixed distance extra bits
|
|
|
// see fleb note
|
|
|
-const fdeb = new u8([0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* unused */ 13, 13]);
|
|
|
+const fdeb = new u8([0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* unused */ 0, 0]);
|
|
|
|
|
|
// code length index map
|
|
|
const clim = new u8([16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]);
|
|
|
|
|
|
+// get base, reverse index map from extra bits
|
|
|
+const freb = (eb: Uint8Array, start: number) => {
|
|
|
+ const b = new u16(31);
|
|
|
+ for (let i = 0; i < 31; ++i) {
|
|
|
+ b[i] = start += 1 << eb[i - 1];
|
|
|
+ }
|
|
|
+ // numbers here are at max 18 bits
|
|
|
+ const r = new u32(b[30]);
|
|
|
+ for (let i = 1; i < 30; ++i) {
|
|
|
+ for (let j = b[i]; j < b[i + 1]; ++j) {
|
|
|
+ r[j] = ((j - b[i]) << 5) | i;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return [b, r] as const;
|
|
|
+}
|
|
|
+
|
|
|
+const [fl, revfl] = freb(fleb, 2);
|
|
|
+// we can ignore the fact that the other numbers are wrong; they never happen anyway
|
|
|
+fl[28] = 258;
|
|
|
+revfl[258] = 28;
|
|
|
+const [fd, revfd] = freb(fdeb, 0);
|
|
|
+
|
|
|
// map of value to reverse (assuming 16 bits)
|
|
|
const rev = new u16(32768);
|
|
|
for (let i = 0; i < 32768; ++i) {
|
|
@@ -25,66 +51,71 @@ for (let i = 0; i < 32768; ++i) {
|
|
|
x = ((x & 0xaaaaaaaa) >>> 1) | ((x & 0x55555555) << 1);
|
|
|
x = ((x & 0xcccccccc) >>> 2) | ((x & 0x33333333) << 2);
|
|
|
x = ((x & 0xf0f0f0f0) >>> 4) | ((x & 0x0f0f0f0f) << 4);
|
|
|
- rev[i] = ((x & 0xff00ff00) >>> 8) | ((x & 0x00ff00ff) << 8);
|
|
|
+ x = ((x & 0xff00ff00) >>> 8) | ((x & 0x00ff00ff) << 8);
|
|
|
+ rev[i] = ((x >>> 16) | (x << 16)) >>> 17;
|
|
|
}
|
|
|
|
|
|
// create huffman tree from u8 "map": index -> code length for code index
|
|
|
// mb (max bits) must be at most 15
|
|
|
-const hTree = (cd: Uint8Array, mb: number) => {
|
|
|
+// TODO: optimize/split up?
|
|
|
+const hMap = ((cd: Uint8Array, mb: number, r: 0 | 1) => {
|
|
|
+ const s = cd.length;
|
|
|
// index
|
|
|
let i = 0;
|
|
|
// u8 "map": index -> # of codes with bit length = index
|
|
|
const l = new u8(mb);
|
|
|
// length of cd must be 288 (total # of codes)
|
|
|
- for (; i < cd.length; ++i) ++l[cd[i] - 1];
|
|
|
+ for (; i < s; ++i) ++l[cd[i] - 1];
|
|
|
// u16 "map": index -> minimum code for bit length = index
|
|
|
const le = new u16(mb);
|
|
|
for (i = 0; i < mb; ++i) {
|
|
|
le[i] = (le[i - 1] + l[i - 1]) << 1;
|
|
|
}
|
|
|
- // u16 "map": index -> number of actual bits, symbol for code
|
|
|
- const co = new u16(1 << mb);
|
|
|
- for (i = 0; i < cd.length; ++i) {
|
|
|
- // ignore 0 lengths
|
|
|
- if (cd[i]) {
|
|
|
- // num encoding both symbol and bits read
|
|
|
- const sv = (i << 4) | cd[i];
|
|
|
- // free bits
|
|
|
- const r = mb - cd[i];
|
|
|
- // bits to remove for reverser
|
|
|
- const rvb = 16 - mb;
|
|
|
- // start value
|
|
|
- let v = le[cd[i] - 1]++ << r;
|
|
|
- // m is end value
|
|
|
- for (const m = v | ((1 << r) - 1); v <= m; ++v) {
|
|
|
- // every 16 bit value starting with the code yields the same result
|
|
|
- co[rev[v] >>> rvb] = sv;
|
|
|
+ let co: Uint16Array;
|
|
|
+ if (r) {
|
|
|
+ co = new u16(s);
|
|
|
+ for (i = 0; i < s; ++i) co[i] = rev[le[cd[i] - 1]++] >>> (15 - cd[i]);
|
|
|
+ } else {
|
|
|
+ // u16 "map": index -> number of actual bits, symbol for code
|
|
|
+ co = new u16(1 << mb);
|
|
|
+ // bits to remove for reverser
|
|
|
+ const rvb = 15 - mb;
|
|
|
+ for (i = 0; i < s; ++i) {
|
|
|
+ // ignore 0 lengths
|
|
|
+ if (cd[i]) {
|
|
|
+ // num encoding both symbol and bits read
|
|
|
+ const sv = (i << 4) | cd[i];
|
|
|
+ // free bits
|
|
|
+ const r = mb - cd[i];
|
|
|
+ // start value
|
|
|
+ let v = le[cd[i] - 1]++ << r;
|
|
|
+ // m is end value
|
|
|
+ for (const m = v | ((1 << r) - 1); v <= m; ++v) {
|
|
|
+ // every 16 bit value starting with the code yields the same result
|
|
|
+ co[rev[v] >>> rvb] = sv;
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
return co;
|
|
|
-}
|
|
|
+});
|
|
|
|
|
|
// fixed length tree
|
|
|
-const flt = new u8(288);
|
|
|
+const flt = new u8(286);
|
|
|
for (let i = 0; i < 144; ++i) flt[i] = 8;
|
|
|
for (let i = 144; i < 256; ++i) flt[i] = 9;
|
|
|
for (let i = 256; i < 280; ++i) flt[i] = 7;
|
|
|
-for (let i = 280; i < 288; ++i) flt[i] = 8;
|
|
|
+for (let i = 280; i < 286; ++i) flt[i] = 8;
|
|
|
// fixed distance tree
|
|
|
-const fdt = new u8(32);
|
|
|
-for (let i = 0; i < 32; ++i) fdt[i] = 5;
|
|
|
+const fdt = new u8(30);
|
|
|
+for (let i = 0; i < 30; ++i) fdt[i] = 5;
|
|
|
// fixed length map
|
|
|
-const flm = hTree(flt, 9);
|
|
|
+const flm = hMap(flt, 9, 0), flnm = hMap(flt, 9, 1);
|
|
|
// fixed distance map
|
|
|
-const fdm = hTree(fdt, 5);
|
|
|
-// fixed length mask
|
|
|
-const fml = (1 << 9) - 1;
|
|
|
-// fixed dist mask
|
|
|
-const fmd = (1 << 5) - 1;
|
|
|
+const fdm = hMap(fdt, 5, 0), fdnm = hMap(fdt, 5, 1);
|
|
|
|
|
|
// find max of array
|
|
|
-const max = (a: Uint8Array) => {
|
|
|
+const max = (a: Uint8Array | number[]) => {
|
|
|
let m = a[0];
|
|
|
for (let i = 0; i < a.length; ++i) {
|
|
|
if (a[i] > m) m = a[i];
|
|
@@ -104,13 +135,12 @@ const bits16 = (d: Uint8Array, p: number) => {
|
|
|
return ((d[o] | (d[o + 1] << 8) | (d[o + 2] << 16) | (d[o + 3] << 24)) >>> (p & 7));
|
|
|
}
|
|
|
|
|
|
-// maximum chunk size (practically, theoretically infinite)
|
|
|
-const MC = 1 << 17;
|
|
|
|
|
|
// expands raw DEFLATE data
|
|
|
-const inflate = (dat: Uint8Array, buf?: Uint8Array) => {
|
|
|
+const inflate = (dat: Uint8Array, outSize?: number) => {
|
|
|
+ let buf = outSize && new u8(outSize);
|
|
|
// have to estimate size
|
|
|
- const noBuf = buf == null;
|
|
|
+ const noBuf = !buf;
|
|
|
// Slightly less than 2x - assumes ~60% compression ratio
|
|
|
if (noBuf) buf = new u8((dat.length >>> 2) << 3);
|
|
|
// ensure buffer can fit at least l elements
|
|
@@ -125,14 +155,14 @@ const inflate = (dat: Uint8Array, buf?: Uint8Array) => {
|
|
|
}
|
|
|
}
|
|
|
// last chunk chunktype literal dist lengths lmask dmask
|
|
|
- let final = false, type = 0, hLit = 0, hDist = 0, hcLen = 0, ml = 0, md = 0;
|
|
|
+ let final = 0, type = 0, hLit = 0, hDist = 0, hcLen = 0, ml = 0, md = 0;
|
|
|
// bitpos bytes
|
|
|
let pos = 0, bt = 0;
|
|
|
// len dist
|
|
|
let lm: Uint16Array, dm: Uint16Array;
|
|
|
while (!final) {
|
|
|
// BFINAL - this is only 1 when last chunk is next
|
|
|
- final = bits(dat, pos, 1) as unknown as boolean;
|
|
|
+ final = bits(dat, pos, 1);
|
|
|
// type: 0 = no compression, 1 = fixed huffman, 2 = dynamic huffman
|
|
|
type = bits(dat, pos + 1, 2);
|
|
|
pos += 3;
|
|
@@ -149,12 +179,13 @@ const inflate = (dat: Uint8Array, buf?: Uint8Array) => {
|
|
|
continue;
|
|
|
}
|
|
|
// Make sure the buffer can hold this + the largest possible addition
|
|
|
- if (noBuf) cbuf(bt + MC);
|
|
|
+ // maximum chunk size (practically, theoretically infinite) is 2^17;
|
|
|
+ if (noBuf) cbuf(bt + 131072);
|
|
|
if (type == 1) {
|
|
|
lm = flm;
|
|
|
dm = fdm;
|
|
|
- ml = fml;
|
|
|
- md = fmd;
|
|
|
+ ml = 511;
|
|
|
+ md = 31;
|
|
|
}
|
|
|
else if (type == 2) {
|
|
|
hLit = bits(dat, pos, 5) + 257;
|
|
@@ -173,7 +204,7 @@ const inflate = (dat: Uint8Array, buf?: Uint8Array) => {
|
|
|
// code lengths bits
|
|
|
const clb = max(clt);
|
|
|
// code lengths map
|
|
|
- const clm = hTree(clt, clb);
|
|
|
+ const clm = hMap(clt, clb, 0);
|
|
|
for (let i = 0; i < ldt.length;) {
|
|
|
const r = clm[bits(dat, pos, clb)];
|
|
|
// bits read
|
|
@@ -199,11 +230,11 @@ const inflate = (dat: Uint8Array, buf?: Uint8Array) => {
|
|
|
// max dist bits
|
|
|
const mdb = max(dt);
|
|
|
ml = (1 << mlb) - 1;
|
|
|
- lm = hTree(lt, mlb);
|
|
|
+ lm = hMap(lt, mlb, 0);
|
|
|
md = (1 << mdb) - 1;
|
|
|
- dm = hTree(dt, mdb);
|
|
|
+ dm = hMap(dt, mdb, 0);
|
|
|
}
|
|
|
- while (1) {
|
|
|
+ for (;;) {
|
|
|
// bits read, code
|
|
|
const c = lm[bits16(dat, pos) & ml];
|
|
|
pos += c & 15;
|
|
@@ -229,7 +260,7 @@ const inflate = (dat: Uint8Array, buf?: Uint8Array) => {
|
|
|
dt += bits16(dat, pos) & ((1 << fdeb[dsym]) - 1);
|
|
|
pos += fdeb[dsym];
|
|
|
}
|
|
|
- if (noBuf) cbuf(bt + MC);
|
|
|
+ if (noBuf) cbuf(bt + 131072);
|
|
|
while (bt < end) {
|
|
|
buf[bt] = buf[bt++ - dt];
|
|
|
buf[bt] = buf[bt++ - dt];
|
|
@@ -243,5 +274,336 @@ const inflate = (dat: Uint8Array, buf?: Uint8Array) => {
|
|
|
return buf.slice(0, bt);
|
|
|
}
|
|
|
|
|
|
+// starting at p, write the minimum number of bits that can hold v to ds
|
|
|
+const wbits = (d: Uint8Array, p: number, v: number) => {
|
|
|
+ v <<= p & 7;
|
|
|
+ const o = p >>> 3;
|
|
|
+ d[o] |= v;
|
|
|
+ d[o + 1] |= v >>> 8;
|
|
|
+}
|
|
|
+
|
|
|
+// starting at p, write the minimum number of bits (>8) that can hold v to ds
|
|
|
+const wbits16 = (d: Uint8Array, p: number, v: number) => {
|
|
|
+ v <<= p & 7;
|
|
|
+ const o = p >>> 3;
|
|
|
+ d[o] |= v;
|
|
|
+ d[o + 1] |= v >>> 8;
|
|
|
+ d[o + 2] |= v >>> 16;
|
|
|
+}
|
|
|
+
|
|
|
+type HuffNode = {
|
|
|
+ // symbol
|
|
|
+ s: number;
|
|
|
+ // frequency
|
|
|
+ f: number;
|
|
|
+ // left child
|
|
|
+ l?: HuffNode;
|
|
|
+ // right child
|
|
|
+ r?: HuffNode;
|
|
|
+};
|
|
|
+
|
|
|
+// creates code lengths from a frequency table
|
|
|
+const hTree = (d: Uint16Array, mb: number) => {
|
|
|
+ // Need extra info to make a tree
|
|
|
+ const t: HuffNode[] = [];
|
|
|
+ for (let i = 0; i < d.length; ++i) {
|
|
|
+ if (d[i]) {
|
|
|
+ t.push({ s: i, f: d[i] });
|
|
|
+ }
|
|
|
+ }
|
|
|
+ const s = t.length;
|
|
|
+ const t2 = t.slice();
|
|
|
+ // after i2 reaches last ind, will be stopped
|
|
|
+ t.push({ s: -1, f: 32768 });
|
|
|
+ if (s == 0) return [new u8(0), 0] as const;
|
|
|
+ if (s == 1) return [new u8([!t[0].s as unknown as number]), 1] as const;
|
|
|
+ t.sort((a, b) => a.f - b.f);
|
|
|
+ let l = t[0], r = t[1], i0 = 0, i1 = 1, i2 = 2;
|
|
|
+ t[0] = { s: -1, f: l.f + r.f, l, r };
|
|
|
+ // complex algorithm from UZIP.js
|
|
|
+ // i0 is lookbehind, i2 is lookahead - after processing two low-freq
|
|
|
+ // symbols that combined have high freq, will start processing i2 (high-freq,
|
|
|
+ // non-composite) symbols instead
|
|
|
+ // see https://reddit.com/r/photopea/comments/ikekht/uzipjs_questions/
|
|
|
+ while (i1 != s - 1) {
|
|
|
+ if (t[i0].f < t[i2].f) l = t[i0++];
|
|
|
+ else l = t[i2++];
|
|
|
+ if (i0 != i1 && t[i0].f < t[i2].f) r = t[i0++];
|
|
|
+ else r = t[i2++];
|
|
|
+ t[i1++] = { s: -1, f: l.f + r.f, l, r };
|
|
|
+ }
|
|
|
+ let maxSym = t2[0].s;
|
|
|
+ for (let i = 0; i < s; ++i) {
|
|
|
+ if (t2[i].s > maxSym) maxSym = t2[i].s;
|
|
|
+ }
|
|
|
+ // code lengths
|
|
|
+ const tr = new u16(maxSym + 1);
|
|
|
+ // max bits in tree
|
|
|
+ let mbt = ln(t[i1 - 1], tr, 0);
|
|
|
+ if (mbt > mb) {
|
|
|
+ // more algorithms from UZIP.js
|
|
|
+ // TODO: find out how this code works (debt)
|
|
|
+ // ind debt
|
|
|
+ let i = 0, dt = 0;
|
|
|
+ // cost
|
|
|
+ const cst = 1 << (mbt - mb);
|
|
|
+ t2.sort((a, b) => tr[b.s] - tr[a.s] || a.f - b.f);
|
|
|
+ for (; i < s; ++i) {
|
|
|
+ const i2 = t2[i].s;
|
|
|
+ if (tr[i2] > mb) {
|
|
|
+ dt += cst - (1 << (mbt - tr[i2]));
|
|
|
+ tr[i2] = mb;
|
|
|
+ } else break;
|
|
|
+ }
|
|
|
+ dt >>>= (mbt - mb);
|
|
|
+ while (dt > 0) {
|
|
|
+ const i2 = t2[i].s;
|
|
|
+ if (tr[i2] < mb) dt -= 1 << (mb - tr[i2]++ - 1);
|
|
|
+ else ++i;
|
|
|
+ }
|
|
|
+ for (; i >= 0 && !dt; --i) {
|
|
|
+ const i2 = t2[i].s;
|
|
|
+ if (tr[i2] == mb) {
|
|
|
+ --tr[i2];
|
|
|
+ ++dt;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ mbt = mb;
|
|
|
+ }
|
|
|
+ return [new u8(tr), mbt] as const;
|
|
|
+}
|
|
|
+// get the max length and assign length codes
|
|
|
+const ln = (n: HuffNode, l: Uint16Array, d: number): number => {
|
|
|
+ return n.s == -1
|
|
|
+ ? Math.max(ln(n.l, l, d + 1), ln(n.r, l, d + 1))
|
|
|
+ : (l[n.s] = d);
|
|
|
+}
|
|
|
+
|
|
|
+// length codes generation
|
|
|
+const lc = (c: Uint8Array) => {
|
|
|
+ let s = c.length;
|
|
|
+ // Note that the semicolon was intentional
|
|
|
+ while (s && !c[--s]);
|
|
|
+ ++s;
|
|
|
+ const cl = new u16(s);
|
|
|
+ // ind num streak
|
|
|
+ let cli = 0, cln = c[0], cls = 1;
|
|
|
+ const w = (v: number) => { cl[cli++] = v; }
|
|
|
+ for (let i = 1; i < s; ++i) {
|
|
|
+ if (c[i] == cln && i != s - 1)
|
|
|
+ ++cls;
|
|
|
+ else {
|
|
|
+ if (!cln && cls > 3) {
|
|
|
+ for (; cls > 138; cls -= 138) w(4082);
|
|
|
+ if (cls > 3) {
|
|
|
+ w(cls > 10 ? ((cls - 11) << 5) | 18 : ((cls - 3) << 5) | 17);
|
|
|
+ cls = 0;
|
|
|
+ }
|
|
|
+ } else if (cls > 4) {
|
|
|
+ w(cln), --cls;
|
|
|
+ for (; cls > 6; cls -= 6) w(112);
|
|
|
+ if (cls > 3) w(((cls - 3) << 5) | 16), cls = 0;
|
|
|
+ }
|
|
|
+ cl.fill(cln, cli, cli += cls);
|
|
|
+ cls = 1;
|
|
|
+ cln = c[i];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ w(cln);
|
|
|
+ return [cl.slice(0, cli), s] as const;
|
|
|
+}
|
|
|
+
|
|
|
+// calculate the length of output from tree, code lengths
|
|
|
+const clen = (cf: Uint16Array, cl: Uint8Array) => {
|
|
|
+ let l = 0;
|
|
|
+ for (let i = 0; i < cl.length; ++i) l += cf[i] * cl[i];
|
|
|
+ return l;
|
|
|
+}
|
|
|
+
|
|
|
+// writes a fixed block
|
|
|
+// returns the new bit pos
|
|
|
+const wfblk = (out: Uint8Array, pos: number, dat: Uint8Array) => {
|
|
|
+ // no need to write 00 as type: TypedArray defaults to 0
|
|
|
+ const s = dat.length;
|
|
|
+ const o = (pos + 2) >>> 3;
|
|
|
+ out[o + 1] = s & 255;
|
|
|
+ out[o + 2] = s >>> 8;
|
|
|
+ out[o + 3] = out[o + 1] ^ 255;
|
|
|
+ out[o + 4] = out[o + 2] ^ 255;
|
|
|
+ out.set(dat, o + 5);
|
|
|
+ return (o + 4 + s) << 3;
|
|
|
+}
|
|
|
+
|
|
|
+// writes a block
|
|
|
+const wblk = (dat: Uint8Array, out: Uint8Array, final: number, syms: Uint32Array, lf: Uint16Array, df: Uint16Array, eb: number, li: number, bs: number, bl: number, p: number) => {
|
|
|
+ wbits(out, p++, final);
|
|
|
+ ++lf[256];
|
|
|
+ const [dlt, mlb] = hTree(lf, 15);
|
|
|
+ const [ddt, mdb] = hTree(df, 15);
|
|
|
+ const [lclt, nlc] = lc(dlt);
|
|
|
+ const [lcdt, ndc] = lc(ddt);
|
|
|
+ const lcfreq = new u16(19);
|
|
|
+ for (let i = 0; i < lclt.length; ++i) lcfreq[lclt[i] & 31]++;
|
|
|
+ for (let i = 0; i < lcdt.length; ++i) lcfreq[lcdt[i] & 31]++;
|
|
|
+ const [lct, mlcb] = hTree(lcfreq, 7);
|
|
|
+ let nlcc = 19;
|
|
|
+ for (; nlcc > 4 && !lct[clim[nlcc - 1]]; --nlcc);
|
|
|
+ const flen = (bl + 5) << 3;
|
|
|
+ const ftlen = clen(lf, flt) + clen(df, fdt) + eb;
|
|
|
+ const dtlen = clen(lf, dlt) + clen(df, ddt) + eb + 14 + 3 * nlcc + clen(lcfreq, lct) + (2 * lcfreq[16] + 3 * lcfreq[17] + 7 * lcfreq[18]);
|
|
|
+ if (flen < ftlen && flen < dtlen) return wfblk(out, p, dat.subarray(bs, bs + bl));
|
|
|
+ let lm: Uint16Array, ll: Uint8Array, dm: Uint16Array, dl: Uint8Array;
|
|
|
+ wbits(out, p, 1 + (dtlen < ftlen as unknown as number)), p += 2;
|
|
|
+ if (dtlen < ftlen) {
|
|
|
+ lm = hMap(dlt, mlb, 1), ll = dlt, dm = hMap(ddt, mdb, 1), dl = ddt;
|
|
|
+ const llm = hMap(lct, mlcb, 1);
|
|
|
+ wbits(out, p, nlc - 257);
|
|
|
+ wbits(out, p + 5, ndc - 1);
|
|
|
+ wbits(out, p + 10, nlcc - 4);
|
|
|
+ p += 14;
|
|
|
+ for (let i = 0; i < nlcc; ++i) wbits(out, p + 3 * i, lct[clim[i]]);
|
|
|
+ p += 3 * nlcc;
|
|
|
+ const lcts = [lclt, lcdt];
|
|
|
+ for (let it = 0; it < 2; ++it) {
|
|
|
+ const clct = lcts[it];
|
|
|
+ for (let i = 0; i < clct.length; ++i) {
|
|
|
+ const len = clct[i] & 31;
|
|
|
+ wbits(out, p, llm[len]), p += lct[len];
|
|
|
+ if (len > 15) {
|
|
|
+ wbits(out, p, clct[i] >>> 5), p += len == 16 ? 2 : len == 17 ? 3 : 7;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ lm = flnm, ll = flt, dm = fdnm, dl = fdt;
|
|
|
+ }
|
|
|
+ for (let i = 0; i < li; ++i) {
|
|
|
+ if (syms[i] > 255) {
|
|
|
+ const len = syms[i] & 31;
|
|
|
+ wbits16(out, p, lm[len + 257]), p += ll[len + 257];
|
|
|
+ if (len > 7) wbits(out, p, (syms[i] >>> 5) & 31), p += fleb[len];
|
|
|
+ const dst = (syms[i] >>> 10) & 31;
|
|
|
+ wbits16(out, p, dm[dst]), p += dl[dst];
|
|
|
+ if (dst > 3) wbits16(out, p, (syms[i] >>> 15) & 8191), p += fdeb[dst];
|
|
|
+ } else {
|
|
|
+ wbits16(out, p, lm[syms[i]]), p += ll[syms[i]];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ wbits16(out, p, lm[256]);
|
|
|
+ return p + ll[256];
|
|
|
+}
|
|
|
+
|
|
|
+// deflate options (nice << 13) | chain
|
|
|
+const deo = new u32([65540, 131080, 131088, 131104, 262176, 1048704, 1048832, 2114560, 2117632]);
|
|
|
+
|
|
|
+// compresses data into a raw DEFLATE buffer
|
|
|
+const deflate = (dat: Uint8Array, lvl: number, pre = 0, post = 0) => {
|
|
|
+ const s = dat.length;
|
|
|
+ const o = new u8(pre + s + 5 * Math.ceil(s / 16384) + post);
|
|
|
+ // writing to this writes to the output buffer
|
|
|
+ const w = o.subarray(pre, o.length - post);
|
|
|
+ if (!lvl || dat.length < 4) {
|
|
|
+ for (let i = 0, pos = 0; i < s; i += 65535) {
|
|
|
+ // end
|
|
|
+ const e = i + 65535;
|
|
|
+ if (e < s) {
|
|
|
+ // write full block
|
|
|
+ pos = wfblk(w, pos, dat.subarray(i, e));
|
|
|
+ } else {
|
|
|
+ // write final block
|
|
|
+ w[i] = 1;
|
|
|
+ wfblk(w, pos, dat.subarray(i, s));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return o;
|
|
|
+ }
|
|
|
+ const opt = deo[lvl - 1];
|
|
|
+ const n = opt >>> 13, c = opt & 8191;
|
|
|
+ // prev 2-byte val map curr 2-byte val map
|
|
|
+ const prev = new u16(32768), head = new u16(32768);
|
|
|
+ // 12288 is an arbitrary choice for max num of symbols per block
|
|
|
+ // 112 extra to never need to create a tiny huffman block near the end
|
|
|
+ const syms = new u32(12400);
|
|
|
+ // length/literal freq distance freq
|
|
|
+ const lf = new u16(286), df = new u16(30);
|
|
|
+ // punishment for missing a value
|
|
|
+ const pnsh = Math.floor(lvl / 2)
|
|
|
+ // l/lcnt exbits index l/lind waitdx bitpos
|
|
|
+ let lc = 0, eb = 0, i = 0, li = 0, wi = 0, bs = 0, pos = 0;
|
|
|
+ for (; i < s; ++i) {
|
|
|
+ // first 2 bytes
|
|
|
+ const b2 = dat[i] | (dat[i + 1] << 8);
|
|
|
+ // index mod 32768
|
|
|
+ let imod = i & 32767;
|
|
|
+ // previous index with this value
|
|
|
+ let pimod = head[b2];
|
|
|
+ prev[imod] = pimod;
|
|
|
+ head[b2] = imod;
|
|
|
+ // We always should modify head and prev, but only add symbols if
|
|
|
+ // this data is not yet processed ("wait" for wait index)
|
|
|
+ if (wi <= i) {
|
|
|
+ // 24573 arbitrary: 24576 - 3
|
|
|
+ if ((li > 12288 || lc > 24573) && s - i > 111) {
|
|
|
+ pos = wblk(dat, w, 0, syms, lf, df, eb, li, bs, i - bs, pos);
|
|
|
+ li = lc = eb = 0, bs = i;
|
|
|
+ for (let j = 0; j < 286; ++j) lf[j] = 0;
|
|
|
+ for (let j = 0; j < 30; ++j) df[j] = 0;
|
|
|
+ }
|
|
|
+ // bytes remaining
|
|
|
+ const rem = s - i;
|
|
|
+ // len dist chain
|
|
|
+ let l = 2, d = 0, ch = c, dif = (imod - pimod + 32768) & 32767;
|
|
|
+ const maxn = Math.min(n, rem);
|
|
|
+ const maxd = Math.min(32767, i);
|
|
|
+ // max possible max length
|
|
|
+ const ml = Math.min(258, rem);
|
|
|
+ while (dif <= maxd && --ch && imod != pimod) {
|
|
|
+ if (dat[i + l] == dat[i + l - dif]) {
|
|
|
+ let nl = 0;
|
|
|
+ // const ml = Math.min(mml, dif);
|
|
|
+ for (; nl < ml && dat[i + nl] == dat[i + nl - dif]; ++nl);
|
|
|
+ if (nl > l) {
|
|
|
+ l = nl;
|
|
|
+ d = dif;
|
|
|
+ // break out early when we reach "nice" (we are satisfied enough)
|
|
|
+ if (nl >= maxn) break;
|
|
|
+ // now, find the rarest 2-byte sequence within this
|
|
|
+ // length of literals and search for that instead.
|
|
|
+ // Much faster than just using the start
|
|
|
+ const mmd = nl - 2;
|
|
|
+ let md = 0;
|
|
|
+ for (let j = 0; j < mmd; ++j) {
|
|
|
+ const ti = (i - dif + j + 32768) & 32767;
|
|
|
+ const pti = prev[ti];
|
|
|
+ const cd = (ti - pti + 32768) & 32767;
|
|
|
+ if (cd > md) md = cd, pimod = ti;
|
|
|
+ }
|
|
|
+ } else if (nl < 2) ch >>>= pnsh; // this is cheating, but we need performance :/
|
|
|
+ }
|
|
|
+ // check the previous match
|
|
|
+ imod = pimod, pimod = prev[pimod];
|
|
|
+ dif += (imod - pimod + 32768) & 32767;
|
|
|
+ }
|
|
|
+ // d will be nonzero only when a match was found
|
|
|
+ if (d) {
|
|
|
+ // store both dist and len data in one Uint32
|
|
|
+ // Make sure this is recognized as a len/dist with 28th bit (2^28)
|
|
|
+ syms[li++] = 268435456 | (revfd[d] << 10) | revfl[l];
|
|
|
+ const lin = revfl[l] & 31, din = revfd[d] & 31;
|
|
|
+ eb += fleb[lin] + fdeb[din];
|
|
|
+ ++lf[257 + lin];
|
|
|
+ ++df[din];
|
|
|
+ wi = i + l;
|
|
|
+ } else {
|
|
|
+ syms[li++] = dat[i];
|
|
|
+ ++lf[dat[i]];
|
|
|
+ }
|
|
|
+ ++lc;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (bs != i) pos = wblk(dat, w, 1, syms, lf, df, eb, li, bs, i - bs, pos);
|
|
|
+ return o.subarray(0, (pos >>> 3) + 1 + post);
|
|
|
+}
|
|
|
+
|
|
|
|
|
|
-export { inflate };
|
|
|
+export { inflate, deflate };
|